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A B S T R A C T   

The neural circuitry involved in moral decisions has been studied since the early days of cognitive neuroscience, 
mainly using moral dilemma. However, the neurocomputational mechanisms describing how the human brain 
makes moral decisions and learns in various moral contexts are only starting to be established. Here we review 
recent results from an emerging field using model-based fMRI, which describes moral choices at a mechanistic 
level. These findings unify the field of moral decision making, extend a conceptual framework previously 
developed for value-based decision making and characterize how moral processes are computed in the brain. 
Moral dilemma can be modeled as value-based decisions that weigh self-interests against moral costs/harm to 
others and different types of prediction errors can be distinguished in different aspects of moral learning. These 
key computational signals help to describe moral choices and moral learning at an algorithmic level and to reveal 
how these cognitive operations are implemented in the brain. This researches provide a foundation to account for 
the neurocomputational mechanisms underlying moral decision making.   

1. Introduction 

Morality is considered to be the set of customs and values that are 
embraced by a cultural group to guide social conduct (Moll et al., 2005; 
Decety and Wheatley, 2015). It is the product of evolutionary pressures 
that have shaped social and motivational mechanisms into uniquely 
human forms of experience and behavior. Moral cognition can be 
considered as a subset of social cognition that focuses on the study of 
behavior involving moral values, which are rules that define what is 
good or bad within a society. Moral cognition shares with social 
cognition the description of processes engaged in the representations of 
others’ mental states, personal goals and social norms (Van Bavel et al., 
2015). However, moral cognition specifically focusses on behaviors that 
are both formally and informally encouraged or discouraged in a given 
society. 

The neural circuitry involved in moral cognition has been studied 
since the early days of cognitive neuroscience (Greene et al., 2001; Moll 
et al., 2002; Greene et al., 2004). However, the cognitive neuroscience of 
morality has only recently been liberated from a simple brain mapping 

approach that linked brain regions to underspecified moral processes, 
such as when using simple comparisons between two cognitive condi-
tions. There is a need to understand moral cognition mechanistically 
using model-based fMRI, which allows characterization of computa-
tional processes identified by modeling behavior, and elucidation of 
where in the brain they are implemented. Assessing the best models to 
account for specific behavior allows us to define the algorithms at work 
during moral choices (Krakauer et al., 2017). The confrontation between 
these algorithms and the brain activity holds the advantage to determine 
the precise computations at stake in some regions and to understand 
how the brain decides. This approach has recently proven successful in 
social neuroscience (Charpentier and O’Doherty, 2018; Konovalov et al., 
2018; Suzuki and O’Doherty, 2020), but remains rare in moral 
neuroscience. 

In this review article, we draw on a framework originally proposed to 
describe value-based decision making, in which choices only depend 
upon individual’s preferences (e.g. food choices, etc.) (Rangel et al., 
2008; Sescousse et al., 2013; Frost and McNaughton, 2017; Lopez-Per-
sem et al., 2017). Our review selects moral decision studies which 

* Corresponding author at: Laboratory of Neuroeconomics, Institut des Sciences Cognitives Marc Jeannerod, CNRS, Lyon, France. 
E-mail address: dreher@isc.cnrs.fr (J.-C. Dreher).   

1 Equal contribution. 

Contents lists available at ScienceDirect 

Neuroscience and Biobehavioral Reviews 

journal homepage: www.elsevier.com/locate/neubiorev 

https://doi.org/10.1016/j.neubiorev.2021.11.023 
Received 15 March 2021; Received in revised form 15 November 2021; Accepted 16 November 2021   

mailto:dreher@isc.cnrs.fr
www.sciencedirect.com/science/journal/01497634
https://www.elsevier.com/locate/neubiorev
https://doi.org/10.1016/j.neubiorev.2021.11.023
https://doi.org/10.1016/j.neubiorev.2021.11.023
https://doi.org/10.1016/j.neubiorev.2021.11.023
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neubiorev.2021.11.023&domain=pdf


Neuroscience and Biobehavioral Reviews 132 (2022) 50–60

51

Box 1 
Models of computational signals engaged in moral choices. 

A number of models have been used to describe moral decisions in behavioral economics and decision neuroscience. These models formally 
quantify the decision values assigned to the different options under consideration in line with moral rules. The Decision value (DV) represents 
the net value of a specific decision option that is under consideration by an agent. The decision value of an option depends on the costs and 
benefits, which are integrated by means of a subject-specific value function. The higher the decision value of a given option, the more likely it is 
to be selected. Indeed, during the action selection process, one is more likely to choose the option that bears the highest decision value. 

In addition, reinforcement learning (RL) and Bayesian learning, two fields of research that describe the computational signals needed for 
learning in different situations mathematically, have been used to account for moral learning. RL is the area of machine learning concerned with 
how agents take actions in an environment to maximize cumulative rewards. A key computational signal needed to update learning is a Pre-
diction Error (PE) signal representing the discrepancy between the predicted and actual outcome/action. Bayesian learning is a probabilistic 
approach of learning in which individuals hold probabilistic beliefs over outcomes (e.g. prior) that are updated into a posterior distribution 
according to the Bayes rule. 

Decision value signals for moral choices 

Inequity aversion model (Fehr and Schmidt, 1999; Gao et al., 2018) 

DVi = πi − α ∗ max
(
πi − πj, 0

)
− β ∗ max

(
πj − πi, 0

)
(1) 

DVi is the decision value of an individual i who chooses how to allocate resources by minimizing the degree of inequity between herself and 
another person. Here πi, stands for the payoff of the decider and πj for the payoff of the other, j.For a given allocation, if it is advantageous for the 
decider (πi > πj), the difference πi − πj is weighted by a parameter α representing her sensitivity to such inequity. If the allocation is disad-
vantageous for the decider (πj > πi), the difference πj − πi is weighted by a parameter β representing her sensitivity to this type of inequity. 

Harm aversion model (Crockett et al., 2017) 
DVi = (1 − α)∗πi − α∗S (2) 

DVi is the decision value of a decider, i, who has to choose between two allocations of money (πi) and electric shocks (S). S is the number of 
shocks which can either be delivered to the decider or to another individual, j. α is a harm-aversion parameter which is different when shocks are 
for the decider (α = αself and S = Si) or for the other participant (α = αother and S = Sj). The difference between αother and αself is defined as the 
decider’s moral preference (this difference is high when someone is more harm averse for another person compared to herself). 

Model of immoral behavior benefiting oneself or a charity (Qu et al., 2020) 
DVi = α∗πi + β∗πj (3) 

DVi is the decision value of a decider, i, who has to choose to accept, or not, an allocation of money for himself or a charity (πi) and an 
allocation of money to a bad cause (πj). α is the weight of the monetary gain for the charity or the decider and β is the weight on the monetary 
gain for the morally bad cause. These two parameters are different when the gain are for the charity (α = αcharity and β = βcharity) or for the 
decider (α = αself and β = βself ). An index of moral preference was defined as the difference (α + β)charity − (α + β)self . The higher this index is, the 
stronger the preference of participants to weight monetary gain for the charity higher than for themselves when controlling the weights of the 
moral cost in the two dilemmas, respectively. 

Honesty preferences model (Zhu et al., 2014) 
DVi = (α − δ)∗πi + (β − δ)∗πj (1) 

DVi is the utility of an individual, i (a.k.a the sender) who has to choose between truthful or untruthful information to send to an anonymous 
receiver, j, so that it helps her to choose correctly between two outcomes. πi is the payoff of the sender and πj the payoff of the receiver. α is the 
weight of the monetary gain of the sender and β is the weight on the monetary gain of the receiver. δ represents the cost of deceiving the receiver 
if the sender chooses to send the untruthful information. This cost depreciates the weighted values of both payoffs πi and πj. 

Guilt aversion model (Chang et al., 2011; van Baar et al., 2019) 
DVi = α∗πi − θ∗(E(πj) − πj) (2) 

DVi is the utility of an individual, i, who has to choose to send back an amount of money to another individual, j, who trusted him (a.k.a the 
investor). πiis the trustee’s payoff and πj is the investor’s payoff. α is the weight of the monetary gain of the trustee, E(πj) is the trustee’s ex-
pectations about the investor’s expected payoff and θ is the guilt-aversion parameter, weighting the difference between the investor’s monetary 
expectation and his actual payoff for a given decision. 

Updating signals for learning in different moral contexts 

Reinforcement learning model (Lockwood et al., 2016) 
Qt+1(a) = Qt(a) + α∗(rt − Qt(a).) (3) 

The reinforcement learning model assumes that the associate value of an action a is updated as new information is revealed. The action value 
Qt+1(a) is equal to Qt(a), the previously estimated action value, plus a prediction error weighted by the learning rate α. The prediction error is the 
difference between the actual value of the action, rt and the estimated value Qt(a). α is the learning rate capturing the individual sensitivity to the 
prediction error. 

The Q-value can be considered as a decision value for the moral choices similar to the ones presented above. Reinforcement learning model, 
thereby directly linking the valuation/selection processes with the learning process, i.e., the prediction error signal updating the Q-value or 
Decision value (see Fig. 1). 
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adopted a neurocomputational approach, this framework allows us to 
show that a mechanistic understanding of moral decision making is now 
possible. We distinguish two fundamental levels of analysis of moral 
cognition: the algorithmic level (what rules does the brain apply for a 
particular operation) and the implementation level (how the brain im-
plements that operation) (Lockwood et al., 2020a,b). This distinction is 
based on the classical proposal that information processing can be 
described and understood at three levels: the computational or goal of 
the information-processing system; the algorithmic or the rules that the 
system applies and the implementational of the system (Marr, 1982). 
Recent extensions of Marr’s framework have been proposed to be 
applied in social, developmental and evolutionary psychology (Lock-
wood et al., 2020a,b; van Rooij and Baggio, 2021) and modern appli-
cations have been introduced to foster mechanistic understanding of 
brain-behavior relationships through a pluralistic notion of neurosci-
ence (Krakauer et al., 2017). Here, at the algorithmic level, we identify 
and describe distinct computational mechanisms engaged, such as the 
valuation and the learning processes. To do this, we provide an inte-
grative description of the main models used in the field (models of 
inequity aversion, harm-aversion, honesty and guilt aversion, and 
models of learning in different moral contexts) (Box 1). We pinpoint 
computational signals described by these formal models originating 
from the fields of behavioral economics, neuroeconomics and computer 
science. These signals help to describe how we make decisions which 

involve trade-offs between self-benefit and others’ harm, how we learn 
new sets of moral norms, how we learn the moral character of others and 
how we learn based on moral concerns. At the implementational level, 
we describe the neural substrates of these computational signals. Our 
review therefore allows us to decompose the neurocomputational 
mechanisms that underlie how moral decisions and moral learning are 
made in various contexts. 

2. A theoretical framework for understanding moral decisions 
and moral learning 

One influential framework in the field of neuroeconomics proposed 
that value-based decision making is intimately linked with learning 
(Rangel et al., 2008). Here, we argue that a similar framework can be 
used to describe moral decision-making and the way we learn in 
different moral contexts (Fig. 1). It proposes that moral choices can be 
decomposed into five distinct processes (Mas-Colell et al., 1995; Sutton 
and Barto, 2018). The first process consists of the construction of a 
representation of the moral decision problem, which entails identifying 
internal and external states as well as potential courses of moral action. 
For example, when facing a moral dilemma, such as whether to hurt 
someone for money, individuals need to represent the possible set of 
actions (hurting someone for money), the moral principles at stake (e.g., 
harm-aversion, fairness, etc.) and the preferences of the individual (e.g., 

Fig. 1. Conceptual framework describing the computations 
involved in moral decision-making. The computations involved in 
moral behavior can be separated into distinct components. The first 
consists of the representations of the moral dilemma that encompass 
the moral principles or norms involved as well as internal and external 
states. Then, individuals evaluate each possible action according to a 
utility function that weights both the individuals’ benefit as well as the 
consequences for others. The utility function depends on the moral 
principles at the time of the choice (concerns with fairness, harm- 
aversion, etc.). Third, individuals select the action that maximizes 
the Decision Value (DV) computed through the utility function. Fourth, 
they evaluate the outcome based on the consequences of their moral 
action and based on other’s reaction to it. Finally, a learning signal δ is 
sent to each of the previous components to update them based on the 
discrepancy between one’s expectations and the observed moral 
outcome.   

Bayesian observer (Siegel et al., 2018, 2019) 

Individuals form beliefs about other people’s harm-aversion tendencies (model 2, Box 1) to be able to infer others’ decisions. The probability 
that another individual chooses one option is defined by individuals’ priors on the other’s harm-aversion parameters defined by a Gaussian 
distribution. Beliefs about the distribution of these parameter are updated when individuals observe the actual behavior of the other individual 
according to Bayes rule: 
μi,t∝μi,t− 1 + σi,t− 1∗δ (4) 

Here μi,t− 1 is the individuals’ prior, updated by the product of the uncertainty over the prior σi,t− 1 and the prediction error δ. Additionally, a 
global parameter ω estimates the belief’s volatility, which represents the individual’s flexibility to update her belief based on the observed 
behavior of the others.  
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the extent of his concern for the other’s well-being and his concern for 
his own benefit). The second process, valuation, consists of attributing a 
specific value to each action under consideration. Formally, valuation of 
each moral option under consideration is modelled through a range of 
utility functions encompassing different moral principles, such as the 
difference between the individual’s earnings and the degree of harm 
inflicted to another person. These benefits/costs are weighted by pa-
rameters representing individuals’ preferences. The third process is the 
selection of one of the actions on the basis of the comparison of their 
value through the computation of a decision value (DV), which is key to 
preside moral choices. Such value comparison is central when making 
value-based (non-moral) decisions between two options (Kable and 
Glimcher, 2007; Domenech et al., 2017) or among a large set of options 
(Morris et al., 2021). This step is usually modelled using a softmax 
function that combines the DV for each moral action and computes a 
probability to choose each action. An action with higher DV is more 
likely to be selected. For example, one is more likely to choose to inflict 
harm to another person if one weighs one’s own benefit higher than that 
of the other person (Box 1). Fourth, after implementing a moral decision, 
there is a need to evaluate the desirability of the outcome that follows 
the action. Fifth, the last process, ‘learning’, consists of updating the 
representation, valuation and selection processes in order to improve the 
quality of future moral decisions. Such updates can result from 
observing others’ behavior or from punishment inflicted by others for 
one’s own immoral behavior. The last two steps are often modeled using 
Reinforcement Learning (RL) or Bayesian learning models, which ac-
count for learning of diverse moral behaviors (e.g., altruistic, punitive or 
trust behavior) (Cushman et al., 2017; Kool et al., 2018; Cushman and 
Gershman, 2019; FeldmanHall and Dunsmoor, 2019; Cashman and 
Cushman, 2020) (Box 1). That is, at the time of outcome, a prediction 
error (PE) signal is computed, that reflects the difference between one’s 
expectation and the actual outcome. This signal is then sent to update 
representations to be used for future moral decisions. 

Using this general framework decomposing how moral choices are 
computed, we next detail how the two key computations introduced 
above, decision value and prediction error, can be used to study moral 
choices and moral learning in distinct contexts. At the algorithmic and 
implementational levels, we illustrate how this framework accounts for: 
i) moral choices when weighing personal benefits against the welfare of 
others (e.g., moral costs such as harm aversion); ii) how we learn new 
moral norms, how we learn about the moral consequences of our ac-
tions, and how we learn about others’ moral characters through obser-
vation of their actions. 

2.1. How do people make trade-offs involving moral principles? 

2.1.1. Computations of utility presiding moral choices 
Models used to account for moral decisions have been advanced to 

formalize people’s sensitivity to weigh personal benefits against the 
moral cost of violating internalized moral norms, such as harming 
others. The moral value of a given action emerges as the integration of 
moral principles with self and other related information (Van Bavel 
et al., 2015). As such, moral choices can be accounted for by models of 
moral preferences developed in the field of behavioral economics. These 
models, which focus on the valuation and selection processes, propose 
that the desirability of outcomes expected from alternative options can 
be quantified by utility functions (Fig. 2a). After attributing a value to 
each option under consideration, these functions weigh the likely ben-
efits and costs resulting from an action. An option is selected based on 
maximizing this utility function (Yu et al., 2018). Different models have 
been used to compute utilities related to moral decisions (Box 1). Such 
models account for situations in which an individual is facing a 
dilemma, such as whether to exhibit altruism or reciprocity at a cost to 
herself (Fehr and Schmidt, 1999; Bolton and Ockenfels, 2000; Charness 
and Rabin, 2002). Experimental evidence demonstrates that people 
consider not only their own material self-interest but also the payoffs of 
others (Camerer, 2003). This can create dilemmas between one’s own 
pecuniary interests and those of another. 

For example, inequity aversion models formalize the computation of 
the distribution of payoffs for different parties (self and others) into a 
utility function (Fehr and Schmidt, 1999; Bolton and Ockenfels, 2000). 
That is, people can either increase utility from the payoffs of others 
(Charness and Rabin, 2002) (i.e., the more the others get the higher their 
own utility) or decrease utility when payoffs are unequal between 
themselves and others (Fehr and Schmidt, 1999; Bolton and Ockenfels, 
2000). 

Other examples come from harm aversion models and from models 
of immoral behavior (Box 1). Formally, these models describe how in-
dividuals assign decision weights on personal gains and other-regarding 
components (e.g. moral costs of benefiting from bad actions or harming 
others). Recent experiments have investigated how people trade off 
monetary gains/losses against moral costs/benefits (Qu et al., 2019, 
2020) or pain to themselves and others (Crockett et al., 2015, 2017). In 
these types of paradigms, the notions of moral cost and harm aversion 
are key to explain trade-offs between moral and monetary values 
(Crockett et al., 2017; Qu et al., 2019, 2020). Moral cost has been 
implemented as money sent to a morally bad cause and harm aversion as 

Fig. 2. Computational signals needed for 
moral decisions and moral learning. a. A key 
computational signal presiding choice behavior, 
known as the decision value (DV), weighs the 
potential benefits and costs of an immoral ac-
tion (here money is the benefit and harming 
someone is the cost). Different formulations of 
DV have been proposed for distinct moral de-
cisions (Box 1). As an illustration, here DV in-
tegrates the payoff (π) of an individual (in 
black) and the shocks she received or she sends 
to someone else (red person) (S). The parameter 
α is a harm aversion parameter which differs 
when oneself or someone else receives the 
shocks (Crockett et al., 2015). b. Illustration of 
three types of Prediction Error (PE) signals 
occurring when learning in different moral sit-
uations. Left. Learning a moral norm is based 
on the computation of a norm PE that occurs 

when a deviation from that norm is detected. Center. Learning about harmful outcomes for others. A PE occurs when an individual observes an outcome more 
harmful than expected occurring to another person. Right. Learning through observation of the moral actions of others. Learning a person’s moral character from 
observing her actions is achieved via a PE that signals a discrepancy between expectation and observation of her moral behavior.   

C. Qu et al.                                                                                                                                                                                                                                       



Neuroscience and Biobehavioral Reviews 132 (2022) 50–60

54

avoiding physical pain (electric shocks) inflicted to a third-party. The 
models used in these tradeoffs relate specific features of the choice op-
tions (e.g., amount of money donated to a bad cause and to oneself, or, 
the difference in the quantity of money and number of electric shocks) to 
their underlying decision values (Box 1). A softmax function transforms 
the decision value of accepting offers or choosing harmful options into a 
probability of making that choice. 

In addition to allocation decisions between oneself and others 
involving tradeoffs between some form of moral cost and monetary 
benefit, moral decisions also refer to actions that are normally pro-
hibited such as lying, cheating or other dishonest actions. Models of 
honesty preferences account for the fact that these actions are morally 
wrong in themselves, independently of their outcomes. Indeed recent 
theoretical and experimental evidence show that lying is associated with 
a cost linked to the act itself (Zhu et al., 2014; Kajackaite and Gneezy, 
2017) (Box 1). 

A last example of a formal model used in moral decision making 
concerns how guilt and its anticipation arise from morally bad actions. 
Guilt can be conceptualized as anticipation of a negative emotional state 
associated with the violation of personal moral rules, social standards or 
another’s expectations (Haidt, 2003; Battigalli and Dufwenberg, 2007). 
Recent models of guilt-aversion allow individual utility functions to 
encompass beliefs, a feature essential for modeling emotions. Such 
formal models provide a precise quantification of the amount of guilt 
anticipated as the result of a given decision (Gong et al., 2019) (Box 1). 
According to these models, one’s aversion to the possibility of experi-
encing future guilt prompts morally aligned decisions to minimize guilt 
anticipation. This approach provides a principled method for eluci-
dating the neural responses to feelings of guilt and exploring how they 
directly guide moral decision making. Together, these studies show that 

mathematical models can be used to express moral decisions as tradeoffs 
between moral values and monetary values. 

2.2. How do people learn key representations that guide moral decisions? 

2.2.1. Computation of prediction error signals to learn in distinct moral 
situations 

As described in the framework describing moral choices (Fig. 1), 
there is a bidirectional relationship between moral decision making and 
learning from PE. For example, moral choices that lead to discrepancy 
with one’s moral values may generate a PE signal. In turn, the outcome 
of a moral choice that is better than expected generates a positive PE, 
which will increase the probability of this choice in the future. Similarly, 
key representations guiding moral decisions, such as harm aversion or 
norm violation (e.g., being treated unfairly) may be learned via gener-
ation of a discrepancy between expectations and outcomes (norm PE), 
leading to updating of representations for future choices (Kishida et al., 
2012; Xiang et al., 2013; Gu et al., 2015; Hétu et al., 2017) (Box 1). 
Uncertainty regarding one’s own moral preferences can also lead the 
decision making process to be a form of learning whereby one discovers 
one’s preferences by making choices and then observing one’s own re-
actions to those choices (Crockett, 2016). Similarly, uncertainties about 
outcomes and others’ preferences affect moral decision making and 
learning from others through observing their behavior and their out-
comes (Siegel et al., 2018; Khalvati et al., 2019; Park et al., 2019). 

2.2.2. Distinguishing different types of moral learning situations 
The concept of PE can be applied to different forms of moral learning. 

Here, we distinguish three types of moral learning phenomenon: (i) 
learning a new set of moral rules/norms (e.g., when an individual 

Fig. 3. Brain networks involved in moral decision-making and learning. a. Brain network computing decision value in moral context. This network in-
cludes the vmPFC, striatum, lPFC and anterior insula (Hare et al., 2010; Hutcherson et al., 2015; Crockett et al., 2017; Qu et al., 2019, 2020). The rTPJ signals a moral 
conflict, π vs S, reflecting the discrepancy between one’s self-interest and moral rules (green) (Obeso et al., 2018), and the lPFC encodes moral preferences, 
αother − αself , reflecting the individual’s degree of adherence to moral rules (blue) (Zhu et al., 2014; Crockett et al., 2017; Gao et al., 2018; Qu et al., 2020). Translating 
moral norms into moral behavior involves changes in functional connectivity between brain regions, as reflected by a relationship between moral preferences and 
reduced responses to profiting from others’ pain in the dorsal striatum, which is functionally connected with the lPFC (Crockett et al., 2017). Another example comes 
from the vmPFC, that computes the decision value of an immoral offer, and enhances its functional coupling with components of the mentalizing network (rTPJ and 
dmPFC), depending upon the beneficiary of an immoral action (Qu et al., 2020). b. Neural correlates of Prediction Error signals engaged in moral learning. 
When learning norms by observing others’ moral decisions, PE is encoded in the SN/VTA, ventral striatum, vmPFC and anterior insula (green) (Xiang et al., 2013; 
Hétu et al., 2017). When learning about harmful outcomes occurring to others PE is encoded in the ventral striatum, caudate nucleus and sgACC (red) (Lockwood 
et al., 2016; Lockwood et al., 2020a; Zahn et al., 2020). When learning another’s moral character PE is encoded in the rTPJ and the caudate nucleus (blue) (Fouragnan 
et al., 2013; Park et al., 2020). Abbreviations: rTPJ, right temporo-parietal junction; sgACC, subgenual anterior cingulate cortex; SN/VTA substantia nigra/ventral 
tegmental area; vmPFC ventromedial prefrontal cortex; mOFC medial orbito frontal cortex; lPFC, lateral prefrontal cortex, dmPFC dorsomedial prefrontal cortex. 
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migrates to a new culture/environment); (ii) associative learning based 
on moral concern (e.g., arbitrary associations between cues and pun-
ishments such as electric shocks to an innocent person); (iii) learning the 
moral character of strangers through observation of their actions 
(Fig. 2b). There are similarities and differences between these different 
forms of learning processes. All of them can be formalized by different 
types of PE: norm PE (Xiang et al., 2013), PE about harmful outcomes 
occurring to others (Lockwood et al., 2016; Nostro et al., 2020), and PE 
by observation of other’s moral actions (Bellucci et al., 2019; Park et al., 
2020). When learning a new set of moral rules and when learning the 
moral character of strangers, what is learned is moral information. Yet, 
in the first case, it concerns an environment, in the second it is about an 
agent. Another difference between learning a new set of moral norms 
and associative learning based on moral concerns is that in this latter 
case the moral rule is presumed (e.g., "to avoid harming others") and 
serves as the underlying motivation that drives learning. 

To account for these different types of moral learning, recent psy-
chological theories have used Reinforcement Learning (RL) and 
Bayesian models (Cushman et al., 2017; Kool et al., 2018; Cushman and 
Gershman, 2019; FeldmanHall and Dunsmoor, 2019; Cashman and 
Cushman, 2020) (Box 1). RL models help to explain how a history of 
pairing social phenomena with positive or negative outcomes can in-
fluence and bias complex moral behaviors (Buckholtz, 2015; Gȩsiarz and 
Crockett, 2015; Christopoulos et al., 2017; FeldmanHall et al., 2018a,b; 
FeldmanHall and Dunsmoor, 2019). For example, RL mechanisms 
describe learning about others’ moral values based on their preference 
to punish fairness violation (FeldmanHall et al., 2018a,b), or learning 
others’ moral traits, such as generosity (Hackel et al., 2020), honesty 
(Bellucci et al., 2019) and trustworthiness (Fouragnan et al., 2013; Park 
et al., 2020) as well as learning moral norms (Xiang et al., 2013; Gu 
et al., 2015; Hétu et al., 2017). More generally, learning procedures 
described by Pavlovian and instrumental conditioning provide valuable 
frameworks for understanding learning in moral contexts, and account 
for how histories of past decisions influence future moral choice (Gȩsiarz 
and Crockett, 2015). More recently, Bayesian models have been used to 
account for learning about the moral characters of others (Siegel et al., 
2018, 2019) and for the ability to learn moral rules, such as criminal 
laws and religious commandments (Cushman et al., 2017; Siegel et al., 
2018, 2019) (Box 1). This family of models are based on the Bayesian 
inference mechanism. Individuals start with a probability distribution 
(prior) over the moral characters of others and update it while observing 
their actions. This revision of one’s prior gives a new probability dis-
tribution called posterior probability. Over repeated observations, one’s 
prior converge towards the true probability distribution of others’ moral 
characters. Unlike RL models, the Bayesian approach account for the 
degree of uncertainty of individuals through some parameters such as 
the variance of the prior distribution. The main result from the literature 
is that moral inference is explained by an asymmetric Bayesian updating 
mechanism in which beliefs about the morality of bad agents are more 
uncertain than beliefs about the morality of good agents. These Bayesian 
models suggest that negative moral impressions destabilize beliefs about 
others, promoting cognitive flexibility in the service of cooperative but 
cautious behavior. One possible extension of Bayesian models in the 
context of moral decision-making could be to combined a Bayesian 
learning model with a Bayesian decision model. For example, one pre-
vious Bayesian model could be extended to decisions and learning in a 
moral context (Devaine and Daunizeau, 2017). 

Computational models are not only useful to better understand the 
behavioral processes engaged in moral decisions. These models can 
also help us to identify the brain areas that support these processes. 
One key question is to identify the brain regions engaged in the valu-
ation stage at the time of moral choice and the brain areas that inte-
grate the information helpful for this valuation. Another important 
question is to identify the brain regions computing the PE signals 
needed to update the moral representations when learning in diverse 
moral situations. 

3. Brain regions engaged in moral valuation and in moral 
learning 

3.1. Brains regions engaged in moral valuation 

fMRI combined with models of utility allows the characterization of 
the brain system that tracks decision value signals when making moral 
choices. Neuroimaging research on moral choices has concentrated on 
cost/benefit tradeoffs such as “Do I ignore my moral values to earn 
money?” The principle of value computation has proven useful to 
identify a brain valuation system that includes the ventromedial pre-
frontal cortex (vmPFC) and ventral striatum. This system is known to be 
engaged in evaluating primary and secondary rewards, when making 
social choices (Park et al., 2017; Konovalov et al., 2018; Suzuki and 
O’Doherty, 2020) and when processing social rewards such as good 
reputation, being treated fairly, and being cooperative (Rilling et al., 
2002; Izuma et al., 2008; Zaki and Mitchell, 2011). 

3.1.1. Do moral value computations engage only the classical brain 
valuation system? 

Important questions, such as knowing how moral considerations are 
incorporated into the valuation process, cannot be arbitrated without 
reference to the brain. Model-based studies have generated three distinct 
hypotheses regarding how moral considerations may or may not be 
incorporated in the valuation system. The first hypothesis proposed that 
computing moral values relies on the same neurocomputational mech-
anisms as those involved in non-moral value computation. Thus, the 
brain valuation network classically engaged in value-based decisions 
would also be engaged for moral decisions during choices coupling 
financial rewards with moral consequences (Fig. 3a). Supporting this 
view, several fMRI studies report that the brain has developed the ca-
pacity to incorporate moral considerations into its standard valuation 
circuitry (Hare et al., 2010; Hutcherson et al., 2015; Crockett et al., 
2017; Qu et al., 2019, 2020; Hu and Hu, 2021). 

A second hypothesis states that, in addition to the classical valuation 
system, there may also be distinct neural substrates engaged by moral 
value computation, which preside choices that weigh moral against 
monetary cost/benefit. According to this account, the computational 
principles underlying valuation of moral and value-based decisions are 
similar (weighing self-monetary profits against moral costs/harm). 
However, moral decisions also engage brain regions not observed in 
non-moral value-based decision making (Fig. 3a). In one study, the de-
cision value reflecting a trade-off between moral cost and self-monetary 
benefit engaged the lateral PFC and the anterior insula (Qu et al., 2019). 
In contrast, a decision value signal encoding the difference between 
self-monetary cost and compliance with one’s moral values (i.e. moral 
benefit) engaged the ventral putamen (Qu et al., 2019). This is consis-
tent with an early theoretical proposal suggesting that there may be 
distinct valuation systems for the two types of considerations: one 
treating violations of moral norms as aversive outcomes, and another 
treating compliance with moral rules as a rewarding outcome (Rangel 
et al., 2008). Another recent fMRI study also indicates that moral con-
siderations do not simply engage the standard valuation brain system, 
since the rTPJ was observed to be specifically engaged in encoding 
moral values (Ugazio et al., 2019). These findings indicate that similar 
computational rules are applied by brain systems outside of the classical 
brain valuation system. 

Additional evidence also supports that moral decision computations 
require nodes outside the classical brain valuation system, including the 
dlPFC, insula and the rTPJ. For example, the lPFC responds more 
strongly when harming others for a small relative to a larger profit 
(Crockett et al., 2017), agreeing with previous work showing that lPFC 
responds to moral norm violations (Chang and Koban, 2013; Ruff et al., 
2013). Altruistic people, who show higher positive moral preference 
scores, have to overcome a stronger subjective moral costs to accept 
offers that profit themselves at the expense of their moral values. This 
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behavioral effect is associated with stronger dlPFC signal (Qu et al., 
2020). This is also consistent with an association between lPFC re-
sponses to immoral earnings and inter-individual differences in 
other-oriented harm aversion (Crockett et al., 2017) or 
corruption-related preferences (Hu and Hu, 2021). Neurocomputational 
studies focusing on dishonesty and guilt aversion also demonstrate a key 
role of lPFC in computing a variable consistent with moral utility. This 
included weighing differences between behaving honestly and pursuing 
self-interest (Greene and Paxton, 2009; Zhu et al., 2014; Dogan et al., 
2016), advantageous inequity aversion when individuals receive more 
than others (Nihonsugi et al., 2015; Gao et al., 2018), and maximizing 
anticipated financial reward while simultaneously minimizing antici-
pated guilt (Chang et al., 2011; Chang and Koban, 2013; Maréchal et al., 
2017; van Baar et al., 2019). Causal evidence for a role of the dlPFC in 
moral decision value computation was demonstrated in honesty and 
guilt aversion paradigms performed in patients with focal lesions (Zhu 
et al., 2014) and in healthy participants using transcranial Direct Cur-
rent Stimulation (tDCS) (Nihonsugi et al., 2015; Maréchal et al., 2017; 
Hu and Philippe, 2021). Similarly, the rTPJ is necessary for signaling 
moral conflicts between self-financial gains and moral values (Obeso 
et al., 2018). Together, these approaches indicate that neural compu-
tations engaged in moral tradeoffs do not simply engage the brain 
valuation system, but that other areas are necessary to perform moral 
decision computations. By interfering with a given model-derived 
signal, they also allow the testing of causal relationships between 
model components and neural signals (Zhu et al., 2014; Obeso et al., 
2018). 

A third, non-exclusive, hypothesis is that the brain areas whose ac-
tivities correlate with utility may not encode utility itself, but attributes 
of utility (e.g., monetary benefits for oneself, moral cost of hurting 
others or moral intention). Attributes of moral values may thus be 
encoded in specific brain regions, and subsequently passed to other 
areas for integration. Such a view was originally tested for the value 
attributes of food (e.g., taste, calories, etc…) (Lim et al., 2013; Suzuki 
et al., 2017). Similarly, in the moral domain, value signals in the vmPFC 
may integrate inputs from the posterior superior temporal cortex, known 
to encode attributes such as the intentions of others (Hare et al., 2010), 
and from the DLPFC, which may act as a domain-general mechanism for 
representing different attributes in a goal-sensitive manner (Tusche and 
Hutcherson, 2018). 

In addition to the brain system described above, the strength of the 
relationships between nodes of this network seem to be key to orches-
trate moral decisions seamlessly (Fig. 3a). For example, the vmPFC, 
which computes the decision value of an immoral offer (weighed sum of 
monetary gain against moral cost), enhanced its functional coupling 
with nodes of the mentalizing network (rTPJ and dmPFC), depending 
upon the beneficiary (self vs charity) of an immoral action (Qu et al., 
2020). Moral decisions also modulate functional connectivity between 
the lPFC and the dorsal part of the striatum, which is sensitive to profit, 
suggesting that moral behavior is linked to a neural devaluation of 
reward performed by a prefrontal modulation of striatal value repre-
sentations (Crockett et al., 2017). In addition, the dlPFC and dmPFC are 
more tightly coupled with the inferior frontal gyrus when the costs of 
lying are higher in participants who valued honesty highly (Dogan et al., 
2016). Similarly, defying a social norm (e.g., acting selfishly when 
others are generous) increased dlPFC-vmPFC connectivity (Hackel et al., 
2020). Together, these studies demonstrate that brain connectivity 
patterns between nodes of the moral decision brain network depend 
upon the moral context weighing monetary advantages against moral 
costs. 

Finally, it worth noting that previous studies using hypothetical 
moral dilemmas and non-computational approaches have pointed out 
regions such as vmPFC, dlPFC or rTPJ as central in moral cognition (e.g., 
Greene et al., 2004; Koenigs et al., 2007). They also report others regions 
such as amygdala whose precise computational role remains to be un-
covered. More generally, other value-based decision making studies 

show that the decision value is sometimes encoded in a wider brain 
network than the one reported in Fig. 3a (Basten et al., 2010; Bartra 
et al., 2013; Sescousse et al., 2013). Overall, this advocates for further 
research and to apply models of moral decision-making to a wider scope 
of tasks and dilemmas. 

3.2. Brain regions encoding updating signals needed for learning in 
different moral contexts 

Model-based fMRI has allowed researchers to make progress in 
pinpointing the brain regions computing different types of PE engaged in 
associative learning in moral contexts, in learning the moral characters 
of others and in learning new sets of moral norms (Fig. 3b). 

3.2.1. How does the brain learn about morally-right actions? 
Associative learning from PE for outcomes in the moral domain was 

investigated while learning to avoid electric shocks for either oneself or 
another person (Lockwood et al., 2020a,b) or learning to choose be-
tween options paired with probabilistic monetary rewards for oneself 
and shocks for a confederate (Nostro et al., 2020). When learning to 
avoid harm to others versus self, a stronger relative balance was observed 
toward model-free over model-based learning (Lockwood et al., 2020a, 
b). The caudate nucleus distinguished PE for avoiding harm to others 
versus self (Lockwood et al., 2020a,b). Ventral striatum encoded PE of 
pain avoidance for self and others and the subgenual anterior cingulate 
cortex (sgACC), a region known to be implicated in moral agency and 
responsibility (Zahn et al., 2020), was engaged when deciding to stay vs. 
switch after no pain for others vs self. The sgACC is also engaged for 
prosocial PE (i.e gaining rewards for others) (Lockwood et al., 2016; 
Lockwood and Wittmann, 2018) and in receiving unexpected positive 
feedback from others (Will et al., 2017). Moreover, individuals with 
higher empathic concern displayed stronger sgACC activation when 
deciding to sacrifice their money to prevent others from receiving an 
electric shock (FeldmanHall et al., 2012, 2015). 

3.2.2. How does the brain learn the moral character of others through 
observation of their actions? 

When learning others’ moral characters from their actions, a few 
studies identified a brain system including the rTPJ and caudate nucleus. 
This network responds with computational variables evolving with the 
impression of agents’ moral character and according to the way they 
shape subsequent moral judgments (Fouragnan et al., 2013; Bellucci 
et al., 2019). The rTPJ is associated with a PE signal updating the im-
pressions of others morality (Park et al., 2020). This is also true for the 
caudate nucleus activity that is associated with updating others’ trust-
worthiness (Fouragnan et al., 2013). Additionally, the dACC computes 
belief updates during judicial judgments when conforming to other ju-
rors (Park et al., 2017). 

3.2.3. How does the brain learn new moral norms? 
When individuals learn norms about fairness in a social group, a PE is 

encoded in brain regions engaged in moral choices, including the 
vmPFC/mOFC, the anterior insula and the striatum (Xiang et al., 2013). 
Interestingly, this network displays only a partial overlap with the re-
gions encoding the PE for other types of moral learning. Future work will 
need to determine whether this finding reflects a truly different neural 
implementation of similar computational PE principles, or is only due to 
the scarcity of studies investigating PE signals for different forms of 
moral learning. Together, these findings illustrate how the use of 
computational models and the definition of different types of PE are key 
to understanding the brain systems underlying moral learning. 

Many outstanding questions remain to be investigated. In particular, 
it remains unclear whether the learning processes involved in moral 
cognition engage distinct algorithms and different neural implementa-
tions from non-moral learning. A similar debate has taken place con-
cerning social learning (Ruff and Fehr, 2014; Joiner et al., 2017; Olsson 
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et al., 2020). Some advocate that social learning can be explained by 
domain-general learning processes (Heyes, 2012, 2018; Heyes and 
Pearce, 2015; Lind et al., 2019), while others argue that it requires 
metacognitive knowledge about whom to learn from (Heyes, 2016; 
Kendal et al., 2018). Future investigations of moral learning will need to 
pinpoint their specificity relative to the neurocomputational mecha-
nisms and brain systems engaged with social learning (Apps et al., 2016; 
Lockwood et al., 2016; Charpentier and O’Doherty, 2018; Konovalov 
et al., 2018; Khalvati et al., 2019; Basile et al., 2020; Suzuki and 
O’Doherty, 2020). In particular, it needs to be clarified whether infer-
ring the intentions and motives behind a moral action can be modeled 
using similar approaches to those proposed for social decisions (Khalvati 
et al., 2019; Park et al., 2019). 

4. Advantages and drawbacks of a neurocomputational 
approach to moral decisions 

Description of the neurocomputational mechanisms engaged in 
moral cognition provides insights to understand how underspecified 
cognitive processes can be mapped to computational variables, thereby 
reducing ambiguity. Mathematical models also allow us to operation-
alize concepts in a precise fashion and to decompose moral decisions/ 
moral learning into subcomponents (e.g., decision value or prediction 
error), which are not apparent from direct behavioral observation (Box 
1). Computational models also help to predict behavior (Crockett, 2016; 
Roberts and Hutcherson, 2019) and to test between distinct models 
reflecting alternative instantiations of different cognitive hypotheses. In 
addition, computational models can be falsified by showing that a given 
model is not able to generate a specific behavioral effect of interest 
(Palminteri et al., 2017). Such approaches help to generate testable 
predictions and can advance theory by formalizing the components of 
morality and how they operate at the algorithmic level. This is especially 
true as some advocate for a more theory-driven study of behavior (van 
Rooij and Baggio, 2021). A more formal approach of moral 
decision-making would help to propose testable predictions both at the 
brain system level and at the behavioral level. For example, the study by 
van Baar et al. (2019) illustrates how one can use computational models 
of moral decisions to distinguish various moral strategies and to identify 
the computational and neural substrates of multiple moral motives un-
derlying reciprocity behavior (e.g., inequity aversion vs guilt aversion). 
A formal approach of moral choices has also been developed in behav-
ioral economics to study dishonesty and other moral-related decisions 
(e.g., Gneezy et al., 2018). Another use of formal models lies in their 
properties to be an oversimplification of the reality. This simplicity al-
lows us to identify the core components needed to explain moral deci-
sion making and even failing models can bring valuable insights to 
better understand these components (Smaldino, 2018). Other advan-
tages of a computational approach to moral choices is that such formal 
understanding can help to explain how computational variables from 
different types of moral tasks interact and to generalize results across 
decision domains (Krajbich and Bartling, 2015; Lopez-Persem et al., 
2017; Tusche and Hutcherson, 2018). In particular, formal models help 
to establish common computational mechanisms between different do-
mains of morality, such as between moral decision-making, judgments 
of whether an action is morally right or wrong, and moral inferences 
about others (i.e., “good” vs “bad” people) (Yu et al., 2018). For 
example, a dynamic model of decision making, initially fitted to par-
ticipants making food choices was able to predict moral decisions and 
reaction times of a separate group of subjects (Krajbich and Hare, 2015). 
Such common computational processes that operate across multiple 
moral dimensions build bridges across dimensions since individual 
variability in one dimension of moral cognition may predict variability 
along other dimensions (Alicke et al., 2015; Uhlmann et al., 2015; Yu 
et al., 2018). 

Cautionary notes about the modeling approach include the fact that 
any computational model is only a good approximation of behaviors and 

cognitive processes, within the range of the model space specified. It is 
important to study inter-individual variability in moral behavior 
because a single computational model may not perfectly explain the 
behaviors and cognitive processes of all tested participants. Individual 
differences may not be best accounted for by the variance in model 
parameters, there may well be subsets of the population that are better 
characterized by different models (Moutoussis et al., 2018). It should be 
acknowledged also that many concepts for moral theories may not be 
captured by simple computational variables (Roberts and Hutcherson, 
2019). Moreover, characterization of the relationships between 
inter-individual differences in moral preferences and brain activation is 
still in its infancy (Crockett et al., 2015, 2017; Qu et al., 2020). For 
example, an elegant study combined computational models with 
multivariate pattern fMRI analyses to describe inter-individual differ-
ences in using different moral strategies (van Baar et al., 2019). Different 
neural substrates were observed for strategies of guilt aversion, inequity 
aversion and moral opportunism (in which participants adaptively 
switch between guilt and inequity aversion strategies). Moral decision 
related activity patterns in specific brain networks were more similar 
between participants that shared similar moral strategies for reciprocity 
decisions than between participants who differed in their strategy. 
Further work would be needed to specify the underlying neuro-
computational mechanisms because these findings only characterized 
the degree to which specific brain regions selectively process compu-
tations relevant to a specific moral strategy. 

5. Conclusions 

There is a need for understanding moral decision processes at 
different levels to bridge the gap between fundamental computational 
principles and the brain system level. In particular, the fact that moral 
choices and learning rely on computations shared with value-based 
decision making and social reinforcement learning has been underap-
preciated. Our proposed framework integrates computational models 
with model-based fMRI findings to offer a mechanistic explanation for 
the emergence of moral concerns at the behavioral and neurobiological 
level. Understanding the computations underlying moral choices may 
prove useful for the development of AI choice algorithms that concur 
with the human understanding of morality (eg. in automatic cars) (Awad 
et al., 2018). Further development of neurocomputational models is also 
needed to pinpoint the roles of factors such as age, gender, ethnicity, 
culture, religion, class, and politics on moral cognition (Hester and Gray, 
2020; Kelly and O’Connell, 2020), and to move towards more ecological 
moral scenario commonly encountered (Nastase et al., 2020). Another 
emerging application concerns computational neuropsychiatry, which 
would benefit from the elucidation of the dysfunctional neuro-
computational mechanisms of different clinical populations engaged in 
moral behavior (Huys et al., 2016; Lockwood, 2016; Balsters et al., 
2017). In particular, autism, psychopathy and major depressive disorder 
have been described as conditions associated with moral disturbances 
(Moran et al., 2011; Buon et al., 2013; Fadda et al., 2016; Gong et al., 
2019; Schaller et al., 2019; Hu et al., 2020; Zahn et al., 2020). Eluci-
dating the modulating roles of hormones (eg. oxytocin or testosterone) 
on the neural computations engaged in moral choices may also help to 
characterize vulnerability to neuropsychiatric diseases (Crockett et al., 
2017; Obeso et al., 2018; Li et al., 2020). 
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