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Brain processing of reward information is essential for complex
functions such as learning and motivation. Recent primate electro-
physiological studies using concepts from information, economic
and learning theories indicate that the midbrain may code two
statistical parameters of reward information: a transient reward
error prediction signal that varies linearly with reward probability
and a sustained signal that varies highly non-linearly with reward
probability and that is highest with maximal reward uncertainty
(reward probability 5 0.5). Here, using event-related functional
magnetic resonance imaging, we disentangled these two signals in
humans using a novel paradigm that systematically varied monetary
reward probability, magnitude and expected reward value. The
midbrain was activated both transiently with the error predic-
tion signal and in a sustained fashion with reward uncertainty.
Moreover, distinct activity dynamics were observed in post-
synaptic midbrain projection sites: the prefrontal cortex responded
to the transient error prediction signal while the ventral striatum
covaried with the sustained reward uncertainty signal. These data
suggest that the prefrontal cortex may generate the reward
prediction while the ventral striatum may be involved in motiva-
tional processes that are useful when an organism needs to obtain
more information about its environment. Our results indicate that
distinct functional brain networks code different aspects of the
statistical properties of reward information in humans.
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Introduction

Detecting and predicting reward information are fundamental

capabilities of simple life forms that have evolved in mammals

into complex behavioral characteristics including learning and

motivation. Reward information can be extracted from a large

variety of stimuli and concerns the presence, qualities and

magnitudes of rewards, their predictability and the motivational

value associated with them. Of the many stimuli occurring in

our natural environment during a certain time period, very few

are actually paired with reward. It is thus essential that the brain

represents the statistical properties of the stimuli leading to

reward information, which provides a critical evolutionary

advantage for survival in a changing environment.

Reward information processing depends upon a small num-

ber of brain regions, such as the prefrontal cortex (dorsolateral

and orbitofrontal parts), the anterior cingulate cortex, the

ventral striatum and the midbrain dopaminergic region

(Schultz, 2000, 2002). Of particular importance for the normal

functioning of this system are midbrain dopaminergic neurons

that project in a divergent fashion to discrete targets, putting

them in a unique position to broadcast their signals. Based on

series of elegant electrophysiological findings in monkeys,

Schultz and colleagues have provided a theoretical framework

for understanding the functions of these neurons. These studies

suggest that the activity of dopaminergic neurons precisely

codes two statistical parameters of reward information (Schultz

et al., 1997; Fiorillo et al., 2003). The first parameter is coded by

a phasic mode of dopamine neuronal activity that reflects

a ‘reward error prediction’, which is the discrepancy between

the probability with which reward is predicted and the actual

outcome (Schultz et al., 1997; Waelti et al., 2001; Fiorillo et al.,

2003). This phasic dopamine signal may be used as a teaching

signal by other brain structures for the learning of reward-

directed behavior. After conditioning in a Pavlovian procedure

in which distinct visual stimuli have specific reward probability,

the phasic dopamine signal varies linearly with reward proba-

bility (Fiorillo et al., 2003). That is, when reward probability

increases, the phasic response of dopamine neurons increases

at the time of the reward-predicting stimulus and decreases at

the time of the reward (the reward magnitude being fixed).

In addition to this phasic mode of activity, important new

results indicate that dopamine neurons exhibit a sustained

mode of activity after learning, that covaries with a second

statistical parameter of reward information, reward uncertainty

(maximal when reward probability = 0.5), and grows from the

onset of the conditioned stimulus to the expected time of

reward delivery (Fiorillo et al., 2003). Moreover, the growth of

this sustained activity is steeper when the discrepancy between

potential reward magnitudes is higher (e.g. a stimulus predict-

ing either a small or large reward with maximal uncertainty

shows higher sustained activity than a stimulus predicting

a small or medium reward magnitude). The sustained mode of

activity occurring with maximal reward uncertainty may be

related to a specific form of attention (Pearce and Hall, 1980), to

motivational processes in the context of reward uncertainty,

or to the expectation of reward information following rules

from information theory (Shannon, 1948). A basic concept of

information theory is Shannon’s entropy, which measures an

ensemble’s average information content or its uncertainty,

and which is maximal for outcomes having a 50% chance of

occurrence (the more uncertain the outcome, the more in-

formation conveyed by it). Similarly, the Pearce--Hall psycho-

logical model of attention proposed that attention to a stimulus

and associability are enhanced if there is uncertainty about the

predictions associated with this stimulus (while a conditioned

stimulus loses its association with a reinforcer when its

consequences are accurately predicted) (Pearce and Hall,

1980).

Regardless of the exact function of the sustained mode of

activity, a major question that remains is whether similar phasic
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and sustained activity dynamics can be observed in the human

reward system. If both the phasic and sustained signals reported

in single-cell monkey recordings can be observed in humans,

this would support a unified cross-species view in which

midbrain neurons obey common basic principles of neural

computation and provide important new insights into human

reward information processing. Another critical question is

whether post-synaptic targets of midbrain neurons respond

differentially to the phasic error prediction signal and the

sustained reward uncertainty signal. If activity patterns in these

projection sites were found to covary differently with each of

the two types of signals, it would implicate differential neural

mechanisms involved in higher-order processing of the error

prediction and reward uncertainty signals. We hypothesized

that the transient reward error prediction signal should be

processed in brain regions that make or maintain the predic-

tion, such as the lateral prefrontal cortex (Schultz et al., 1997;

Kobayashi et al., 2002; Watanabe et al., 2002). Conversely, we

hypothesized that the sustained reward uncertainty signal

should covary with brain regions involved in the expectation

of reward information in terms of information theory.

To test predictions about reward-related neural activity in

humans that emerge from monkey electrophysiological data

and to investigate whether post-synaptic targets of midbrain

dopaminergic neurons respond differentially to the phasic error

prediction signal and the sustained reward uncertainty signal,

we designed a new paradigm for event-related functional

magnetic resonance imaging (fMRI) (see Materials and Methods

and Fig. 1, Table 1). Thirty-one subjects were paid for respond-

ing to different ‘slot machines’ that systematically varied

monetary reward probability, magnitude and expected reward

value (i.e. product probability 3 magnitude, which is a crucial

parameter of reward information) (Glimcher, 2003). This

allowed us to distinguish the influence of these parameters of

reward information on brain regions responding transiently

with the error prediction signal at the time of the reward-

predicting stimulus and at the time of the rewarded outcome

versus in a sustained fashion during anticipation of rewards of

maximal uncertainty.

Materials and Methods

Subjects
Thirty-one young right-handed subjects (mean age = 27.6; SD 5.7, 16

males) were recruited following procedures approved by the National

Institute of Mental Health Institutional Review Board and provided

written informed consent. All subjects were free of neurological,

psychiatric and substance abuse problems. They had no history of

gambling and no medical problems or medical treatment that could

affect cerebral metabolism and blood flow. Subjects were paid for

participating and earned extra money for performing the task described

Figure 1. Task design. Four types of ‘slot machines’ (types A--D) were presented pseudo-randomly. The probabilities of winning different amounts of money or nothing were
indicated, respectively, by the red and white portions of a pie chart above the slot machines. The slot machine and pie chart remained on the screen throughout the delay duration
(as shown for slot D). Each trial consisted of a brief (1 s) presentation of the cue (stimulus S1, one of the four slot machines), followed after a fixed delay (14 s) by the outcome S2
(either $0 or a picture of a $10 or $20 bill, lasting 2 s). This long fixed delay allowed us to distinguish transient hemodynamic signals associated with the error prediction signal at S1
and S2 from the sustained signal associated with reward uncertainty during the delay. During each trial, subjects indicated which ‘slot machine’ was presented by pressing
a response button both at the cue S1 and the outcome S2 (regardless of winning or not). Reward delivery was not contingent upon subject response.
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below. Subjects were told that they would earn only a percentage of

each of the $10/$20 bills presented on the screen.

Experimental Paradigm
The stimuli representing the ‘slot machines’ were projected on a screen

positioned at the foot of the subjects. The experiment was performed

using Presentation software (version 6.0, http://nbs.neuro-bs.com/

presentation) on a laptop PC running Windows 2000.

Experimental trials were divided into three phases (Fig. 1). During the

first two phases (i.e. presence of the slot machine on the screen), the

words: ‘Chance to win $ XX’ (where XX stands for $0, $10 and $20)

remained visible on top of each slot machine with a pie chart indicating

in red the probability of winning the indicated amount of money and in

white the probability of receiving nothing.

The first phase of the trial consisted of the presentation of a cue, S1,

lasting 1 s, representing one of the four slot machines (A, B, C or D):

Slot machine (A): P = 1/4: $20, P = 3/4: $0.

Slot machine (B): P = 1/2: $20, P = 1/2: $0.

Slot machine (C): P = 1/2: $10, P = 1/2: $0.

Slot machine (D): P = 1: $0 (sure to get no reward).

These slot machines were designed to vary reward probability, magni-

tude and expected reward value (reward probability 3 magnitude):

A and B: Reward values match, reward probabilities differ, expected

reward values differ;

A and C: Reward values differ, reward probabilities differ, expected

reward values equal;

B and C: Reward values differ, reward probabilities match, expected

reward values differ.

During the second (delay) phase, the pie chart remained on the

screen and each of the three spinners of the slot machine rotated

successively before stopping on a fixed image (‘bar’ or ‘7’) that lasted

until the end of the trial. The overall delay duration was 14 s (starting

after the cue S1), and was divided as indicated for the slot machine D in

Figure 1 (the first ‘bar’ or ‘7’ image appeared at 13.5/3 s, the second at

2 3 13.5/3 s and the third at 13.5 s). This fixed delay was necessary

because dopamine neurons are known to be susceptible to the

uncertainty of the timing delivery of rewards. Moreover, the long delay

between S1 and S2 was required in order to distinguish phasic and

sustained modes of activity. Therefore, the timing of our design made it

possible to distinguish hemodynamic signals associated with the error

prediction signal at the time of S1 presentation from those associated

with anticipation during the delay and those associated with the error

prediction signal at the time of the outcome S2.

In the third ‘outcome‘, or S2 phase, ‘$0’, ‘$10’ or ‘$20’ was projected for

2 s. Pictures of the $10 and $20 bills were surrounded, respectively, by

a small and a large stack of gold pieces in order to produce direct visual

experience of distinct reward magnitudes and reinforce the pleasant-

ness of winning money (see Fig. 1). To equalize visual similarity between

stimuli, the ‘$0’ outcome was presented in a grey rectangle that had the

same dimensions as the bills. The inter-trial interval between slot

machines varied between 4 and 16.5 s with a geometric distribution

of mean = 6.8 s.

Subjects indicated which slot machine was presented by pressing

a specific response button on a diamond-shaped four-response button

device at the time of S1 and the time of S2 (the same response button

press corresponding to the current slot machine at S1 was also required

at S2 regardless of winning or not). The association between each slot

machine and a specific response button was previously learned during

a training session before scanning (see Training session). These motor

responses ensured that subjects were attending to the specific types of

slot machines as well as their outcomes and enabled us to keep the

motor component equal between S1 and S2. No requirement was made

to press the response button quickly. Importantly, the stimuli presenta-

tions were not contingent on the subject’s response. The number of

correctly responded trials was indicated at the end of each run to the

subject during scanning.

We designed the ‘slot machines’ A, B, C by including the common null

outcome ‘$0’ because the emotional response to the outcome of

a ‘gamble’ depends on the perceived value and likelihood of both the

obtained outcome and its alternatives (Mellers, 2000). Without this

common null outcome, smaller wins could be experienced as more

pleasurable than larger wins for the same reward probabilities between

two slot machines (e.g. it would feel better to win $10 if the alternative is

$1, than if the alternative is $200, an effect called the ‘counterfactual

comparison’). For the same reason, the presence of this null outcome

allowed us to investigate the effect of reward probability on brain

activity by comparing the two ‘slot machines’ (A and B) that possess

identical potential reward magnitudes (‘$0’ or ‘$20’) but different reward

probabilities. Moreover, the use of the ‘slot machine’ D (P = 1 to win

nothing) allowed us to control for a non-selective effect of attention/

anticipation without motivation to win.

There were a total of six runs, each consisting of 16 trials (four trials

for each type of slot machine). Each of the four possible slot machines

occurred pseudo-randomly during each run. To prevent fluctuations

between runs, the probability of each potential outcome was exact and

reached at the end of each run for each slot machine. In addition, to

control for the order of the presentation of the slot machines, we

designed sequences of slot machines using conditional probabilities at

two levels: each slot machine had equal probability of being followed by

any of the four slot machines (conditional probability of order 1) and

two successive slot machines also had the same probability of

occurrence (conditional probability of order 2). The order of the runs

was randomized between subjects.

Training Session
Before scanning, subjects performed a training session (lasting ~10min),

in which they performed one run of the task. They were told that, unlike

in a casino, the odds of winning for each slot machine were known. They

were shown the four types of slot machines with different probability of

winning real money indicated by the pie chart (Fig. 1). During this

training session, subjects simply had to learn the association between

each slot machine and a specific response button on a diamond-shape 4

responses button device (top button for slot A, left button for slot B,

right button for slot C and bottom response button for slot D). Subjects

were asked to respond with their right thumb by pressing the response

button corresponding to the current slot machine presentation, first at

the time of the cue S1 and then at the time of the outcome S2 (the same

response button press corresponding to the current slot machine was

required at S2 regardless of winning or not).

Note that in the electrophysiological study on phasic and sustained

dopaminergic neuronal activity, monkeys had to learn the probability

between an arbitrary stimulus and a potential reward for ~5 weeks

Table 1
Task design. In bold are outlined the contrasts revealing transient (S1: Prediction and

S2: error prediction) and sustained activation (Delay: reward uncertainty). " higher;

# lower; $ equal.

Phase of the trial Reward
probability: P

Potential rewards
magnitudes: M

Expected reward
value: E

S1: Prediction
(S1: P 5 0.5 $20 [ P 5 0.25 $20)

P " M $ E "

Delay: Reward uncertainty
(Delay: P 5 0.5 $20 [ P 5 0.25 $20)

P " M $ E "

Delay: Maximal discrepancy between
potential reward magnitudes
(Delay: P 5 0.5 $20 [ P 5 0.5 $10)

P $ M " E "

Delay: equal expected reward value but
variable probability and magnitude
(Delay: P 5 0.5 $10 [ P 5 0.25 $20)

P " M # E $

S2: Positive error prediction
(S2: receive $20 in the context of
P 5 0.25 [ receive $20 in the
context of P 5 0.5)

P # M $ E #

S2: Negative error prediction
(S2: receive $0 in the context of
reward probability P 5 0.5 [ receive
$0 in the context of reward
probability P 5 0.25)

P " M $ E "
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(100--200 trials/day), and recordings began only after learning, as

evidenced by emergence of discriminative conditioned licking re-

sponses (Fiorillo et al., 2003). In our design, the explicit presentation

of the reward probability and magnitude avoided having the subjects

learn the probability between a conditioned stimulus and the outcome.

This ensured that subjects knew the exact winning probabilities (since

it is difficult to have a behavioral index of this learning effect in humans)

and avoided long learning sessions to associate an arbitrary stimulus

with a certain reward probability. The explicit display of the reward

probability also avoided brain activation that would have arisen at

intermediate probabilities if subjects had to learn reward probabilities

in the scanner. Even though the probabilities were known, subjects

could not predict with certainty the actual reward and continuously

experienced the random nature of the outcome, intrinsic to the slot

machines A--C.

fMRI Data Acquisition
Imaging was conducted on a General Electric 3 T scanner with a real-

time functional imaging upgrade (General Electric Medical Systems,

Milwaukee, WI). A sagittal localizer scan was used to orient subsequent

scans. Functional imaging scans involved a series of 29 contiguous

3.3 mm axial slices per volume collected over six runs, plus 8 ‘dummy’

volumes at the start of each session. These functional scans used an

echo-planar single shot real-time gradient echo T2* weighting (EPIRT

sequence, repetition time = 2300 ms, echo time= 23 ms, field of view=
24 cm, 64 3 64 matrix, voxel size=3.75 3 3.75 3 3.3, flip angle = 90�,
ramp sampling on).

Signal dropout in the orbitofrontal cortex due to susceptibility artifact

was reduced by using a local high-order z-shimming performed in the

axial direction with an oval-shape region that included the orbitofrontal

cortex and the basal ganglia. In addition, we tilted the head of the

subject with a 30� angle relative to the AC--PC line because this simple

head positioning procedure improves the shim in this area (Heberlein

and Hu, 1991). Indeed, a region of high field distortion is located above

the nasal cavity and a region of low field is located behind the nasal

cavity. Since these field effects are dependent on the direction of the

main magnetic field relative to the head, it is possible to direct the

distortions away from the inferior frontal lobe by using this simple

positioning method for acquiring para-axial slices traversing the anterior

commisure and the posterior commisure (Heberlein and Hu, 1991).

The head position was obtained by slightly increasing the padding on

the base of the neck and reducing padding for the back of the head using

an air pressure-inflatable pillow. The angle was obtained using a pro-

tractor measuring the angle between the vertical and the AC--PC line

and was then checked with the sagittal localizer.

High-resolution T1-weighted structural scans from each subject used a

magnetizationpreparedgradientecho sequence (MP-RAGE) (1801.0mm

sagittal slices; FOV = 256 mm, NEX = 1, TR = 11.4 ms, TE = 4.4 ms;

matrix = 256 3 256; TI = 300 ms, bandwidth 130 Hz/pixel = 33 kHz for

256 pixels in-plane resolution = 1 mm3). Real time reconstruction

method and AFNI (http://afni.nimh.nih.gov/afni/) were used in the

scanner room to monitor subject’s head motion on-line as they were

performing the task in the scanner.

Image Analysis
All data were analyzed using Statistical Parametric Mapping (SPM99,

http://www.fil.ion.ucl.ac.uk/spm/spm99.html; Wellcome Department

of Cognitive Neurology, London, UK). Data pre-processing of the

functional scans included slice timing and motion correction, co-

registration to the anatomical data, alignment to the first volume for

each subject and spatial normalization to the Montreal Neurological

Institute (MNI) T1-weighted template image supplied with SPM99. The

images were then smoothed with a 10 mm full width at half maximum

Gaussian kernel.

Within-subject time series modeling accounted for the following

15 regressors:

� four regressors at S1: [S1, slot A: P = 0.25 $20, P = 0.75 $0], [S1, slot B:

P = 0.5 $20, P = 0.5 $0], [S1, slot C: P = 0.5 $10, P = 0.5 $0], [S1, slot D:

P = 1 $0];

� four regressors during the delay: [Delay, slot A], [Delay, slot B],

[Delay, slot C], [Delay, slot D];

� seven regressors at S2: [S2_no reward, slot A], [S2_no reward, slot B],

[S2_no reward, slot C], [S2_no reward, slot D], [S2_reward, slot A],

[S2_reward, slot B], [S2_reward, slot C].

This design allowed us to decompose the three phases of each type of

‘slot machine’ according to reward probability and reward magnitude.

The fMRI response to each event type was modeled as a delta function at

S1 (1 s) and S2 (2 s) and as a rectangular pulse for the presence of the

slot machine on the screen (15 s) convolved with a canonical

hemodynamic response function (HRF). The default high-pass filter

from SPM99 was applied to the time series.

Condition-specific estimates of neural activity (betas) were computed

independently at each voxel for each subject, using the general linear

model. Using random-effects analysis, we then entered the relevant

contrasts of parameter estimates from the 31 subjects into a series of

one-way t-tests. We used a threshold of P < 0.005, uncorrected for the

whole brain (random effects model).

Contrasts of Interests
First, in order to distinguish the brain regions responding transiently to

the error prediction signal and with reward uncertainty during the delay

period, we focused on the following contrasts:

Transient Activity (Error Prediction)

Brain regions responding in a transient fashion at the time of the cue S1

with higher reward probability should increase their activity in the

comparison: (S1Slot_B > S1Slot_A, i.e. [S1:P=0.5 $20,P=0.5 $0] > [S1:P=0.25
$20, P = 0.75 $0]).

Brain regions responding in a transient fashion at the time of the

reward delivery at S2 with lower reward probability should show more

activation in the comparison: (rewarded outcome S2$20 Slot_A > S2$20 Slot_B,

i.e. receive $20 in the context of slot A > receive $20 in slot B).

Brain regions responding in a transient fashion with the negative

prediction error at the time of non-reward delivery at S2 (i.e. when

reward is omitted in a more unexpected context) should increase their

activity in the comparison: (S2 P = 0.5 $0 > S2 P = 0.75 $0, i.e. no reward

at S2 in the comparison S2$0_Slot_B > S2$0_Slot_A). This comparison

should be viewed with caution because it is unclear whether a neuronal

deactivation from a negative predication error response corresponds to

a BOLD signal deactivation or activation (as noted by O’Doherty et al.,

2003).

The comparison at S1 therefore refers to a contrast between two

predictions made at cues indicating different reward probabilities, while

the comparison made at S2 refers to the difference between two error

prediction signals.

Sustained Activity with the Reward Uncertainty Signal

Brain regions responding to the reward uncertainty signal during the

delayshouldbeactivated inthecomparison: (DelaySlot_Slot_B>DelayDelay_Slot_A,
i.e. [Delay: P = 0.5 $20, P = 0.5 $0] > [Delay: P = 0.25 $20, P = 0.75 $0]).

The results of these analyses aimed at transient and sustained

activities are reported in Table 2. Note that since the monkey study

shows a symmetric relationship between reward probability and the

sustained mode of dopaminergic activity (similar sustained activities

were observed for P = 0.25 and P = 0.75), we reasoned that the

comparisons between the two slot machines with reward probabilities

of P = 0.5 and P = 0.25 (slot B versus slot A) would reveal brain regions

involved with reward uncertainty during the delay period. The long

duration of our trials prevented us from including the full range of

reward probabilities (e.g. from 0 to 1 with 0.25 reward probability

increment).

Moreover, in the context of our probability range, both the error

prediction signal at S1 and the reward uncertainty signal during the

delay period should covary with an increase in reward probability (from

P = 0.25 to P = 0.5). However, these two signals can be distinguished by

their temporal characteristics since an intrinsic property of the error

prediction signal is its transient activity and a major characteristic of the

reward uncertainty signal is its sustained activity during the delay.
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Discrepancy between Reward Magnitudes (Probabilities Matched)

Second, since the sustained dopaminergic activity that occurs with

reward uncertainty (P = 0.5) is highest with the maximal discrepancy

between potential reward magnitudes (the stimulus predicting a small

or large reward had higher median change in sustained activity than the

stimulus predicting a small or medium reward magnitude) (Fiorillo

et al., 2003), we investigated whether a similar effect of maximal

discrepancy between potential reward magnitudes would be obtained

in humans on the sustained mode of dopaminergic activity during the

delay period, using the contrast: DelaySlot_B > DelaySlot_C, i.e. [Delay:

P = 0.5 $20, P = 0.5 $0] > [Delay: P = 0.5 $10, P = 0.5 $0].

Expected Reward Value Matched between Slot Machines

Third, we investigated the effect of reward probability/magnitude on

the sustained mode of dopaminergic activity by comparing the two

slot machines with equal expected reward value in the contrasts:

(DelaySlot_C < DelaySlot_A, i.e. [Delay: P = 0.5 $10, P = 0.5 $0] < [Delay:

P = 0.25 $20, P = 0.75 $0]) and (DelaySlot_C >DelaySlot_A, i.e. [Delay: P = 0.5
$10, P = 0.5 $0] > [Delay: P = 0.25 $20, P = 0.75 $0]). The motivations

underlying these comparisons were: (i) to investigate whether the brain

regions activated with maximal reward uncertainty are still activated

when comparing two slot machines with equal expected reward value;

(ii) the knowledge that the monkey electrophysiological study manip-

ulated reward probability and magnitude in two separate experiments

but left open the issue of whether the sustained mode of activity is more

responsive to reward probability or magnitude when controlling the

expected reward value.

Plots of Event Time-courses

In addition to the random effects analysis previously described, we also

performed two fixed-effect analyses in order to plot the time-courses of

the events. The first fixed-effect analysis included as covariates the four

slot machines at S1, regardless of whether they would be rewarded or

not. This fixed-effect analysis was used to plot the time course of

activation in the midbrain dopaminergic region that covaried with the

error prediction signal at S1 with higher reward probability (Fig. 3b, left

portion) and for plotting the time-course of activation in the ventral

striatum with reward uncertainty (Fig. 6c).

The second fixed analysis only included as covariates an impulse

response function at S1 that included the three conditions in which the

‘slot machines’ are rewarded and the control slot machine (P = 1 to

receive $0). This fixed effect analysis was used to plot the time-course

of activation in the midbrain dopaminergic region that covaried with

lower reward probability at the time of the outcome S2 for rewarded

trials (Fig. 3b, right portion).

Results

Behavioral Data

Before scanning, subjects underwent a training session in which

they learned the association between each slot machine and

a specific response button (see Materials and Methods and Fig.

1). During scanning, as expected from the simplicity of the task,

subjects performed at ceiling, both at the time of the cue S1 and

at the time of the outcome S2. The percentages of correct

responses made at S1 were 98.6% (SD.02), 99.5% (SD.01), 98.4%

(SD.02) and 99.3% (SD.02) for the slot machines A--D respec-

tively. The percentages of correct responses made at the time of

the outcome S2 were: 99.2% (SD.02) for the no reward delivery

and 98.6% (SD.05) for the reward delivery of the slot A, 99.7%

(SD.1) for the no-reward and 100% for the reward of the slot B,

99.4% (SD.02) for the no-reward and 100% for the reward of the

slot C and 99.6% (SD.02) for the slot D.

Response times (RTs) at the time of S1 and S2, analyzed for

correct response only, are depicted in Figure 2. Repeated-

measures ANOVA with the four types of slot machines at S1

revealed no significant RT difference between conditions

[F (3,30) = 1.7, P = 0.2]. Response times at S2 were analyzed by

performing a 3 3 2 repeated-measures ANOVA that included the

slot machines A, B and C and their two possible outcomes

(reward/no-reward). There was a main effect of outcome

[F (1,30) = 5.3, P < 0.05], subjects responding faster when

they were rewarded than when then were not. There was no

difference between types of slotmachines [F (2,60) = 1.6, P = 0.2]
and no interaction between factors [F (2,60) = 0.7, P = 0.5).

Functional Imaging Data

Specific predictions can be made on the basis of electrophys-

iological recordings from midbrain dopaminergic neurons in

monkeys. In those single-cell recordings, after learning, higher

Table 2
Foci of activations in the different statistical contrasts

Anatomical structure
(Brodmann’s area)

Error prediction at S1:
P 5 0.5 $20 [ P 5 0.25 $20

Error prediction at S2:
$20 in slot A [ $20 in slot B

Reward uncertainty during the delay:
P 5 0.5 $20 [ P 5 0.25 $20

Conjunction Error prediction
at S1 and S2

Peak MNI
coordinates,
x y z

Z-value Peak MNI
coordinates,
x y z

Z-value Peak MNI
coordinates,
x y z

Z-value Peak MNI
coordinates,
x y z

Z-value

Dopaminergic midbrain �4 �23 �15 2.5* 8 �19 �15
�8 �15 �15

3.1
2.97

�4 �19 �15
�4 �8 �11

2.83
2.98

0 �23 �15 2.92

Left DLPFC �46 19 30 3.3 �34 27 34 3.1 �42 23 34 2.96
Left inferior frontal gyrus
(BA 47)

�38 34 0 3.2 �38 27 4 3.0 �38 27 0
�53 19 �8

3.59
3.5

Right orbitofrontal cortex
(BA 11)

42 23 �19 3.17 27 27 �15 2.3* 42 23 �8 3.62

Left superior frontal gyrus �46 8 57 3.14
Right superior frontal gyrus 38 11 53 3.54
Left anterior cingulate cortex �11 27 19 2.98
Right anterior cingulate cortex 4 15 27 2.75
Superior frontal gyrus (medial) �4 23 65 3.42 �11 15 61 3.27 �11 8 65 3.65
Left inferior frontal gyrus
(BA 44/45)

�53 15 8 2.94

Left intra-parietal sulcus region �42 �49 42 2.86 �49 �42 57 3.28 �46 �27 38 2.92
Right intra-parietal region 27 �61 42 2.92 30 �57 57 2.77
Left motor cortex �39 �20 59 3.16
Right putamen 23 8 �11 3.52
Left putamen/claustrum �30 0 �11 3.11

All areas were significant at P\ 0.005, uncorrected for multiple comparisons (random effects model). Except *P\ 0.01, uncorrected for multiple comparisons.
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reward probability induces larger phasic response of midbrain

neurons at the time of the reward-predicting stimulus and less

activity at the time of the outcome. Moreover, the sustained

mode of activity increases with reward uncertainty during the

delay period between the conditioned stimulus and the out-

come (Fiorillo et al., 2003). As predicted by these electrophys-

iological findings, our fMRI results showed that the midbrain

region responded transiently to both higher reward probability

at the time of the cue (comparison: S1Slot_B > S1Slot_A, extent

cluster k = 3) and to lower reward probability at the time of the

rewardedoutcome (comparison: rewardedoutcomeS2$20_Slot_A >

S2$20_Slot_B, extent cluster k = 19), and in a sustained fashion

to reward uncertainty during the delay period (P < 0.005,

uncorrected; comparison: DelaySlot_Slot_B > DelayDelay_Slot_A,

extent cluster k = 20; Fig. 3 and Table 2). As also predicted,

the sustained activity observed in the midbrain region with

maximal reward uncertainty was higher with greater dis-

crepancy between potential reward magnitudes (P < 0.05

uncorrected; comparison: DelaySlot_B > Delayslot_C, MNI co-

ordinates: x,y,z = –4,–19,–19, Z = 2.1, extent cluster k = 9).

Note that a liberal threshold was used for this specific com-

parison because it was motivated by an a priori hypothesis

based on the monkey study.

It could be proposed that the midbrain sustained activity only

reflects an increase in expected reward value. This interpreta-

tion cannot be ruled out from the monkey electrophysiological

data because in that study reward probability and reward

magnitude were varied in two separate experiments without

controlling the expected reward value (thus expected reward

value and reward probability were confounded in the first

experiment and expected reward value and reward magnitude

were confounded in the second experiment). Our experiment

allowed us to reject this interpretation because when compar-

ing two conditions with equal expected reward value but

variable probability and magnitude, the midbrain region was

more robustly activated in anticipation of an uncertain reward

(50% chance) with low magnitude than in anticipation of

a reward with known low probability (25% chance) but higher

magnitude (P < 0.005 uncorrected; comparison: DelaySlot_C >

DelaySlot_A; x,y,z = 0,–8,–19, Z = 3.1, extent cluster k = 18). Thus,

the sustained midbrain activity was not due to an increase in

expected reward value alone. It should be noted that the spatial

resolution of fMRI does not allow us to specify which midbrain

nuclei are involved. However, the MNI coordinates of the peaks

of our midbrain activity fall precisely in the substantia nigra

according to the atlas of Lucerna et al. (2002).

The same statistical comparison of functional activity maps

that revealed activity in the midbrain region with the error

prediction signal and the reward uncertainty signal also allowed

us to investigate whether activity in distinct post-synaptic

midbrain dopaminergic projection sites covaries with the two

types of signals broadcast by midbrain neurons. At the time of

the cue, higher reward probability transiently activated a frontal

network that included the left inferior frontal gyrus, left

dorsolateral prefrontal cortex (DLPFC), medial part of the

superior frontal gyrus, as well as the right orbitofrontal cortex

and anterior cingulate cortex (ACC) (P < 0.005, uncorrected;

comparison: S1Slot_B > S1Slot_A; Fig. 4a and Table 2). Activation

was also observed to a lesser extent in the intra-parietal region

bilaterally. At the time of the rewarded outcome, a similar

frontal network, consisting of the left inferior frontal gyrus, left

DLPFC and medial part of the superior frontal gyrus covaried

with lower reward probability (P < 0.005, uncorrected; com-

parison: rewarded outcome S2$20_Slot_A > S2$20_Slot_B; Fig. 4b and

Table 2). Moreover, all these frontal brain regions were

specifically involved with the reward error prediction signal

because they were not significantly activated by reward un-

certainty during the delay (P > 0.05, uncorrected) and were

Figure 2. Behavioral results. (A) Mean response time (RT) across subjects at the time of the cue S1 in the different ‘slot machine’ conditions. Error bars represent ±SEM. There
was no significant difference in RT between the four types of slot machines. (B) Mean response time at the time of the outcome S2 (rewarded and non-rewarded). There was
a significant effect of outcome, i.e. subjects responded faster for the rewarded slot machines than for the non-rewarded ones.
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significantly more activated in association with these phasically

modeled responses than in association with a sustained mod-

eled response related to reward uncertainty during the delay

period (P < 0.001, uncorrected) (Fig 4c). In order to investigate

which brain regions are commonly activated with the error

prediction signal at the cue and the rewarded outcome, we also

performed a conjunction analysis of the brain regions com-

monly activated in a transient fashion with higher reward

probability at the time of the cue and with lower reward

probability at the time of the rewarded outcome S2. This

additional analysis activated a network that included the mid-

brain dopaminergic region, the left lateral prefrontal cortex, the

right orbitofrontal cortex and the intra-parietal cortex bilater-

ally (P < 0.005, uncorrected; Table 2).

In addition, at the time of a more unexpected reward

omission that lead to a negative prediction error response

(P < 0.005 uncorrected; comparison: non-rewarded outcome

S2$0_Slot_B > S2$0_Slot_A), activation was found in a cortical

network similar to the one observed with the positive pre-

diction error response. This network was composed of the

inferior frontal gyri bilaterally, the left dorsolateral prefrontal

cortex as well as the right orbitofrontal cortex/fronto-polar

cortex and the inferior parietal lobule bilaterally (Fig. 5; Table 3).

Finally, we investigated which post-synaptic regions respond

to the reward uncertainty signal during the delay (comparison:

DelaySlot_Slot_B > DelayDelay_Slot_A). We found that the ventral

striatum (putamen) showed sustained activation that covaried

with maximal reward uncertainty during reward anticipation

(P < 0.005, uncorrected; Fig. 6). Additional comparisons

demonstrated that this brain region was specifically activated

with the reward uncertainty signal during the delay period

because it did not show significant transient response to higher

reward probability at the time of the cue (P > 0.1, uncorrected)

or to lower reward probability at the time of the rewarded

outcome (P > 0.1, uncorrected) and was significantly more

activated with reward uncertainty during the delay period than

with the error prediction signal at the time of the cue (P < 0.05,

small volume correction for a sphere of 20 mm centered at the

maximum of activity). Moreover, the sustained ventral striatum

activity cannot be attributed to increased expected reward

value alone because it was still present when comparing two

slot machines with equal expected reward value (comparison

DelaySlot_C > DelaySlot_A, P < 0.05 corrected for small volume in

a 20 mm sphere centered at the peak of ventral striatum

activity). Taken together, these results indicate that the ventral

striatum is specifically activated with the reward uncertainty

signal during the delay period.

Discussion

Our fMRI findings showed that midbrain region responded both

to reward uncertainty in a sustained fashion during the delay

Figure 3. Transient and sustained midbrain activities. (A) Left: Location of transient midbrain responses covarying with the error prediction signal at the cue S1 and (right) the
rewarded outcome S2; middle: location of sustained midbrain activity covarying with the reward uncertainty signal during the delay, each superimposed on a structural scan indexed by
MNI coordinates (random-effects model, P\ 0.005 uncorrected). Consistent with electrophysiological recordings (Fiorillo et al., 2003), the human midbrain region was transiently
activated with higher reward probability at the cue S1 (S1Slot_B[S1Slot_A) and with lower reward probability at the rewarded outcome S2 (S2$20_Slot_A[S2$20_Slot_B). Moreover, the
midbrain region showed higher sustained activity with reward uncertainty during the delay (DelaySlot_B[DelaySlot_A). (B) Left portion: Time-course of activity (±SEM) of the midbrain
for slot A (P5 0.25 $20, red) and slot B (P5 0.5 $20, yellow) for a spherical (r5 5mm) region of interest centered at the voxel maximally activated at the cue (S1Slot_B[S1Slot_A)
obtained from a fixed-effect analysis that differentiated only between the four slot machines at S1, whether or not rewarded at S2. Right portion: Time-course of activity for rewarded
trials only for slot A (dashed red) and slot B (dashed yellow) at the peak of activation at the rewarded outcome (S2$20_Slot_A[S2$20_Slot_B). The color bar at the bottom shows the
actual timing of the three phases of a trial: S1, Delay and S2. Separate regressors were used to independently model each of these phases in the random effects model used for the
statistical maps shown in (a). Green, pink and blue lines show hemodynamic functions convolved with the boxcar of each phase assuming a 4--6 s lag in the response.
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and transiently to the error prediction signal (Fig. 3), extending

in humans the distinction between sustained and transient

dopamine activity dynamics observed in monkeys in similar

experimental settings. More importantly, we found activities in

different midbrain projection sites that covary with the two

types of signals broadcast by dopaminergic neurons: a frontal

network showed a transient activation that covaried with the

reward error prediction signal both at the time of the cue and at

the time of the outcome (Figs 4 and 5), while the ventral

striatum (putamen) showed sustained activation that covaried

with maximal reward uncertainty during reward anticipation

(Fig. 6). These results have important functional consequences

because they indicate distinct roles for two dopamine-related

networks in processing different reward information signals. In

the following two sections, we further discuss the meanings of

these findings.

Both Transient and Sustained Activities Are
Observed in Human Midbrain

The fact that the human midbrain responded transiently to both

higher reward probability at the cue and to lower reward

probability at the rewarded outcome, and in a sustained fashion

to reward uncertainty during the delay period (Fig. 3), supports

a unified cross-species view in which midbrain dopaminergic

neurons obey common basic principles of neural computation.

Figure 4. Brain regions covarying with the transient positive error prediction signal at S1 and S2. (A) Location of transient activation in left inferior frontal gyrus (iFG), left DLPFC,
medial superior frontal gyrus (sFG), right orbitofrontal and anterior cingulate cortices covarying with higher reward probability at the time of the cue S1 (S1Slot_B[S1Slot_A) overlaid
onto a 3D-rendered brain (top) and on a coronal section (bottom). (B) Location of transient left iFG, left DLPFC and medial sFG activations covarying with lower reward probability at
the time of the rewarded outcome S2 (S2$20_Slot_A[S2$20_Slot_B). White circles in (a) and (b) indicate common iFG and DLPFC activities at S1 and S2. (C) Parameter estimates at
the activity peak of left DLPFC, left iFG and medial sFG commonly activated in a conjunction analysis of brain regions responding transiently to higher reward probability at S1 and to
lower reward probability at S2. Parameter estimates plotted at S1, during the delay and at S2 respectively concern the comparisons: S1Slot_B[S1Slot_A, DelaySlot_B[DelaySlot_A

and S2$20_Slot_A [ S2$20_Slot_B.
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Figure 5. Brain regions covarying with the transient negative error prediction signal at S2. Location of transient activation in inferior frontal gyri, left dorsolateral prefrontal cortex,
right orbitofrontal cortex/fronto-polar cortex and bilateral inferior parietal cortex covarying with the negative error prediction signal at the time of non-reward delivery at S2
(S2$0_Slot_B [ S2$0_Slot_A) overlaid onto a 3D-rendered brain (top) and on a coronal and axial sections (bottom).

Figure 6. Brain regions covarying with the sustained reward uncertainty signal. (A) Location of sustained bilateral ventral striatum activations covarying with reward uncertainty
during the delay period (DelaySlot_B[ DelaySlot_A). (B) Glass brain views illustrating that this comparison only activated focal sub-cortical regions (midbrain and ventral striatum).
(C) Time-course of activation in the same comparison at the peak of right ventral striatum activity for slot machines A (red) and B (yellow).
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These results are particularly striking because they were

obtained with a more extended time-course than the one

used in the monkey electrophysiological experiment. In addi-

tion, the sustained activity of the midbrain region, observed

when reward uncertainty was maximal, was higher with the

greatest discrepancy between potential reward magnitudes.

Moreover, this sustained midbrain activity was not due to an

increase in expected reward value alone (i.e. reward probability

3 magnitude). Indeed, when comparing two conditions with

equal expected reward value but variable probability and

magnitude, the midbrain was more robustly activated in

anticipation of a reward with maximal uncertainty and low

magnitude than in anticipation of a reward with lower proba-

bility but higher magnitude. The result of this latter comparison

also indicates that the sustained mode of midbrain activity is

more sensitive to reward uncertainty than to reward magnitude.

This suggests that, in the context of the range of our reward

probabilities, the sustained midbrain activity may code the

expectation of reward information in terms of the information

theory (Shannon, 1948). According to this theory, the more

uncertain the outcome (reward or no reward), the more

information the outcome contains (and information is available

in the outcome only in the presence of uncertainty). This

parallels findings that the central nervous system uses probabi-

listic models in domains such as object perception (Kersten

et al., 2004), sensorimotor learning (Kording and Wolpert,

2004) and cognitive control (Dreher et al., 2002b; Koechlin

et al., 2003), and suggests that the neural computations

regarding reward information may share common mathematical

principles of information theory with these domains.

Thus, our findings shed new light on the function of the

sustained mode of neuronal activity in the midbrain region

observed with reward uncertainty by suggesting that it reflects

the expectation of reward information in terms of information

theory. The sustained reward uncertainty signal may be useful

for promoting exploratory behavior in the balance that an

organism must strike between exploring the environment to

gain new information and exploiting existing knowledge in

order to obtain a reward (the latter involving the phasic error

prediction signal) (Dayan and Balleine, 2002). A computational

theory explaining the two modes of midbrain dopaminergic

activities remains to be developed and may benefit from

models proposing that dopamine acts at different time-scales

for selecting, maintaining or suppressing currently active

representations (Dehaene and Changeux, 2000; Dreher and

Burnod, 2002; Dreher et al., 2002a). It is clear that actual

temporal difference models of dopamine discharge, relying on

the assumption of the maximization of total future reward,

cannot account for the motivational properties of dopaminergic

neurons (Dayan and Balleine, 2002). Future models of dopami-

nergic discharge will need to include a motivational compo-

nent, taking into account the cost and benefit of performing an

action (Satoh et al., 2003; Salamone et al., 2005) and will need

to clarify the nature of the sustained dopaminergic signal

(Daw et al., 2005; Niv et al., 2005).

Other potential interpretations of the sustained mode of

midbrain activity that we observed, such as motivation or

attention alone, are unlikely because electrophysiological re-

sults indicate that when monkeys are more motivated/attentive

to obtain a reward when the reward probability is P = 0.75

relative to P = 0.5 (as evidenced by an increase in their licking

behavior in anticipation of the reward) there is an associated

decrease of the sustained mode of activity (Fiorillo et al., 2003).

Furthermore, these interpretations do not explain the increased

sustained midbrain activity observed when comparing the two

slot machines with equal expected reward values.

It should be noted that we did not observe midbrain

activation with the negative prediction error signal when no

reward was delivered, which is consistent with the majority of

previous reward fMRI studies that investigated brain regions

responding with this signal (Fletcher et al., 2001; Pagnoni et al.,

2002; McClure et al., 2003; O’Doherty et al., 2003; Ramnani

et al., 2004). To our knowledge, only one study (Aron et al.,

2004) reported midbrain activation with a form of negative

prediction error (when comparing negative with positive

feedback). This fMRI study investigated brain regions involved

during a probabilistic classification learning task in which

subjects presented with a stimulus had to decide between

two responses followed by one of two potential feedback

images presented after a delay. The midbrain region was also

found activated, relative to a cross fixation, both at the times of

stimulus presentation and of feedback, but not during the delay

period. Moreover, a ROI analysis showed an activation of this

brain region that correlated with the degree of uncertainty

during the delay. Although interesting, comparisons with our

study are difficult because the Aron et al. study concerned

a learning paradigm and was designed neither to reveal brain

regions activated in a sustained fashion nor to distinguish

between the transient and sustained components of the reward

system (since the short delay duration of mean = 2 s prevented

such distinction). In addition, brain activation observed at the

time of feedback might have been influenced by the pseudo-

random timing of feedback occurrence since dopaminergic

neurons are sensitive to reward timing uncertainty. Finally, the

decision required at the time of stimulus presentation and the

perception of a contingency between this presentation and

feedback to the response probably influences the reward

Table 3
Foci of activations with the negative error prediction signal at the time of non-reward

delivery at S2 (P\ 0.005, uncorrected)

Anatomical structure
(Brodmann’s area)

Error prediction at
S2 (no reward):
P 5 0.75 $0 [ P 5 0.5 $0

Error prediction at
S2 (no reward):
P 5 0.5 $0 [ P 5 0.75 $0

Peak MNI
coordinates,
x y z

Z-value Peak MNI
coordinates,
x y z

Z-value

Left middle FG (BA 6) �30 15 46 4.53
Left inferior frontal gyrus
(BA 45)

�46 23 8 3.25

Right inferior frontal gyrus
(BA 45)

42 23 4 3.51

Right middle frontal gyrus
(BA 8)

23 30 38 2.78

Right OFC/fronto-polar cortex 15 61 �8 4.11
Right inferior temporal gyrus
(BA 37)

46 �42 �4 3.51

Left inferior temporal gyrus
(BA 37)

�38 �46 �8 2.58

Left inferior parietal lobule
(BA 40)

�57 �30 30 3.15

Right inferior parietal lobule
(BA 40)

42 �38 30 2.90

Thalamus �8 15 8 3.99
Posterior cingulate cortex �11 �46 11 3.26
Left premotor cortex �30 �15 68 3.22
Anterior cingulate cortex �4 �8 46 3.56
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brain system (Elliott et al., 2004; O’Doherty et al., 2004;

Tricomi et al., 2004).

Different Networks Are Involved with Transient versus
Sustained Reward Information Signals

Frontocortical Regions Respond Transiently to

the Reward Error Prediction

We found transient activations in a frontal network that

covaried with the reward error prediction signal both at the

time of the cue and at the time of the outcome (Figs 4a,b and 5).

This frontal network was specifically involved with the reward

error prediction signal because it was not significantly activated

by reward uncertainty during the delay and was significantly

more activated in association with these phasically modeled

responses than in association with a sustained modeled re-

sponse related to reward uncertainty during the delay period

(Fig. 4c). These results extend previous fMRI reports that

DLPFC, inferior frontal gyrus and orbitofrontal cortex activity

correlates with an error prediction signal related to abstract

stimulus--response associations or taste reward, although some

of these studies focusedmore on ventral striatum activity (Berns

et al., 2001; Fletcher et al., 2001; O’Doherty et al., 2003; Corlett

et al., 2004; Paulus et al., 2004). The lateral prefrontal cortex

may generate the reward prediction because neurons from this

brain region represent predictions about expected rewards

according to the context (Kobayashi et al., 2002; Watanabe

et al., 2002). Alternative, and non-exclusive, interpretations of

the lateral prefrontal cortex activation include an increase in

attention (at the cue and the rewarded outcome), the cognitive

representation of possible outcomes (at the cue) and the

hedonic consequences of receiving a reward (at the time of

the reward) (Kringelbach et al., 2004). Our lateral prefrontal

cortex activation is unlikely to result from selection of response

or maintaining stimulus--response association in working

memory because these two processes were equally present

for each slot machine, and were therefore subtracted in the

comparison revealing the error prediction.

The ACC activity also provides fMRI evidence that converges

with monkey electrophysiological findings (Schall et al., 2002)

and human electrophysiological scalp recordings of the in-

volvement of this brain region with a reward prediction error

signal (Holroyd et al., 2002). A recent theory proposed that the

ACC uses the reward prediction error signal sent from the

midbrain dopaminergic neurons to reinforce adaptive behaviors

(Holroyd et al., 2002). This theory holds that the ACC is

activated both by internal (from an efference copy of the

response command) and external (from feedback in the out-

side environment) sources of unexpected error information.

Confirming this theory, when subjects learn to select between

two responses by trial-and-error using feedback stimuli that

indicate monetary gains and losses, both error responses and

error feedback activate the same ACC region (Holroyd et al.,

2004).

It is worth noting that, when subjects have to learn an

association between a conditioned stimulus and sweet juice,

some of the fMRI studies mentioned above (Fletcher et al., 2001;

McClure et al., 2003; O’Doherty et al., 2003; Paulus et al., 2004)

have also reported activation of the ventral striatum/putamen

with the reward error prediction. These learning studies were

neither designed to dissociate sustained from transient neural

activation nor to identify sustained activity correlating with

reward uncertainty. Thus, their results may include sustained

activity dynamics correlating with reward uncertainty. More-

over, the fact that nothing had to be learned in our task might

explain why the ventral striatum/putamen activation did not

covary significantly with the error prediction signal.

We also found that the intra-parietal region was activated

with the error prediction signal, which was also reported —but

not highlighted — in a previous study (O’Doherty et al., 2003).

This result is interesting because lateral intraparietal (LIP)

neurons may code a map of the relative value of each movement

relative to the available alternative when monkeys perform

decision-making tasks (LIP neurons would represent both the

magnitude of the reward expected from an eye-movement and

the probability that a particular response will be rewarded)

(Platt and Glimcher, 1999). Here, we show in humans that the

intra-parietal region is activated with the error prediction

independently of any decision.

The Ventral Striatum Covaries with Reward Uncertainty

During Reward Anticipation

The ventral striatum (putamen) showed sustained activation

that covaried with maximal reward uncertainty during reward

anticipation (Fig. 6). This brain region was specifically activated

with the reward uncertainty signal during the delay period

because it did not show significant transient response to higher

reward probability at the time of the cue or to lower reward

probability at the time of the rewarded outcome and was

significantly more activated with reward uncertainty during the

delay period than with the error prediction signal at the time

of the cue. Moreover, the sustained ventral striatum activity

cannot be attributed to increased expected reward value alone

because it was still present when comparing two slot machines

with equal expected reward value. These findings are consistent

with the ventral striatum playing a role in the expectation of

reward information and motivation (Apicella et al., 1992;

Berridge and Robinson, 1998; Shidara et al., 1998). For example,

electrophysiological studies report that when monkeys perform

sequences of behaviors that must be completed successfully

before reward delivery, the increased reward information and

motivation as the rewarded trial approaches are reflected

in ventral striatal neuronal activity (Shidara et al., 1998).

More importantly, our results may elucidate controversies

regarding the precise function of distinct components of

the dopaminergic system in reward information processing.

Indeed, one important alternative functional hypothesis to

the error prediction theory (Schultz et al., 1997) proposes

that the dopaminergic system (especially the neostriatum and

nucleus accumbens) mediates the incentive value of reward

(Berridge and Robinson, 1998). Our results offer a means to

reconcile these two theories by suggesting that the ventral

striatum reflects the expectation of reward information or the

incentive value of reward while the network of prefrontal

cortex regions may generate the reward prediction.

It has been proposed that gambling, with its intrinsic reward

uncertainty characteristic, has reinforcing properties that may

share common mechanisms with addictive drugs (Fiorillo et al.,

2003). This proposal is especially interesting in light of recent

reports indicating a specific role of the dopaminergic innerva-

tion to the striatum in well-established drug-seeking behavior

(Bradberry, 2000; Ito et al., 2002). Our finding also offers

an account for previous reports of human ventral striatum
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activation during anticipation of monetary and taste reward as

coding, at least in part, the expectation of reward information

(Breiter et al., 2001; Knutson et al., 2001; O’Doherty et al.,

2002). This signal could gain access to striatal neurons through

ascending dopamine fibers as well as structures implicated in

the evaluation of the motivational significance of stimuli,

especially the amygdala and the orbitofrontal cortex (Nishijo

et al., 1988; Schoenbaum et al., 1998). Alternative interpreta-

tions of our putamen activation, such as preparation of the

motor response or duration perception, are unlikely because

these processes were equally present in each condition and

were therefore subtracted in the comparisons. Furthermore,

the absence of conditioning between cues and reward in our

paradigm precludes attribution of our putamen activation to

a learning effect.

Our finding of two networks covarying with different reward

information signals may indicate that dopaminergic projection

sites can distinguish the two signals. It is also possible that these

targets show independent transient (prefrontal cortex) and

sustained (ventral striatum) activities related to the two signals

and/or that they help to shape dopaminergic neuronal activity

by differentially modulating their phasic and sustained modes of

firing, which occur independently in individuals neurons

(Fiorillo et al., 2003). This latter hypothesis is supported by

anatomical observations that different populations of dopami-

nergic neurons are innervated predominantly by the target

areas to which they project, or by the regions that, in functional

terms, are the most closely linked to the target area (Sesack

et al., 2003). For example, in rodents, dopaminergic neurons

projecting to the prefrontal cortex receive direct reciprocal

inputs from this brain region, but not from the striatum,

while dopaminergic neurons projecting to the striatum

receive afferents from that brain region, but not from the

prefrontal cortex, thereby forming two projection systems

(Sesack et al., 2003). This suggests a general principle for

midbrain dopaminergic neuronal afferent regulation: namely

that the prefrontal cortex and the striatum are responsible

for regulating and controlling different modes of dopaminergic

neuronal firing.

It should be noted that the blood oxygenation level-

dependent (BOLD) signal observed with fMRI is not sensitive

to dopamine release per se but reflects the input and intra-

cortical processing of a given area rather than its spiking output

(Logothetis et al., 2001). Thus, detection of differential BOLD

responses in midbrain dopaminergic region may reflect afferent

inputs and local neural activity rather than corresponding

directly to dopaminergic output. For the same reason, the fact

that dopamine is released in the striatum and the prefrontal

cortex following firing of dopaminergic neurons does not

necessarily imply that these post-synaptic dopaminergic sites

should show a differential BOLD response with fMRI. This may

explain why prefrontal activation did not covary significantly

with anticipation of maximal reward uncertainty and why

striatal activation did not covary with the error prediction

signal, even though it is known from single unit monkey

recordings that both transient and sustained signals are ob-

served throughout the brain, and in particular in the prefrontal

cortex and the striatum.

Conclusion

We have reported a number of findings that shed new light on

the functional properties of various components of the reward

system in humans. We demonstrated that the midbrain region

exhibits both transient and sustained activities and that the

lateral prefrontal cortex and the ventral striatum respectively

are engaged in a specific fashion with two signals related to

distinct statistical properties of reward information. Since the

mesolimbic/nigrostriatal dopaminergic pathways develop

earlier than the mesocortical pathway in evolution, it may be

proposed that the expectation of reward information, which

may promote exploratory behavior, occurred phylogenetically

earlier than the ability to learn from reward prediction error,

which may have appeared more progressively. Our approach

may be fruitfully extended towards an understanding of diseases

involving dysfunctions of the dopaminergic system, such as

schizophrenia and Parkinson’s disease as well as pathologies of

reward processing (such as gambling and addiction).
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