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The orbitofrontal cortex is known to carry information regarding expected reward, risk and experienced outcome. Yet, due to

inherent limitations in lesion and neuroimaging methods, the neural dynamics of these computations has remained elusive in

humans. Here, taking advantage of the high temporal definition of intracranial recordings, we characterize the neurophysiological

signatures of the intact orbitofrontal cortex in processing information relevant for risky decisions. Local field potentials were

recorded from the intact orbitofrontal cortex of patients suffering from drug-refractory partial epilepsy with implanted depth

electrodes as they performed a probabilistic reward learning task that required them to associate visual cues with distinct reward

probabilities. We observed three successive signals: (i) around 400 ms after cue presentation, the amplitudes of the local field

potentials increased with reward probability; (ii) a risk signal emerged during the late phase of reward anticipation and during the

outcome phase; and (iii) an experienced value signal appeared at the time of reward delivery. Both the medial and lateral

orbitofrontal cortex encoded risk and reward probability while the lateral orbitofrontal cortex played a dominant role in

coding experienced value. The present study provides the first evidence from intracranial recordings that the human orbitofrontal

cortex codes reward risk both during late reward anticipation and during the outcome phase at a time scale of milliseconds. Our

findings offer insights into the rapid mechanisms underlying the ability to learn structural relationships from the environment.
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Introduction
Predicting the outcome of potentially rewarding events is a

critical ability for adaptive behaviour. The orbitofrontal

cortex (OFC) is known to code at least three different

types of reward-related information: reward probability,

risk and experienced value (or outcome value) (Doya,

2008; Rushworth and Behrens, 2008; Peters and Büchel,

2010; Padoa-Schioppa and Cai, 2011; Levy and

Glimcher, 2012). The reward probability of a potential

reward indicates the prospect of a reward that will occur

within a specified time period. The risk of an upcoming

outcome, defined as the outcome variance, measures the

unpredictability of possible outcomes, and follows an in-

verted U-shaped relationship with reward probability (max-

imal for reward probability = 0.5). Experienced value (also

called outcome value) reflects the value of consumption

experienced at the time of reward delivery. In choice situ-

ations, expected utility theory (Von Neumann and

Morgenstern, 1945) and prospect theory (Kahneman and

Tversky, 1979) provide descriptions of subjective value and

measure it with individuals’ preferences for choice options.

However, assessment of subjective value occurs not only in

choice but also in no-choice ‘imperative’ situations (Tobler

et al., 2009). A number of functional MRI studies indicate

that expected value is represented in a ‘common currency’

network encompassing the medial part of the OFC/ventro-

medial prefrontal cortex (vmPFC) and ventral striatum

(O’Doherty et al., 2002; Kim et al., 2011; Sescousse

et al., 2015; Metereau and Dreher, 2015). The medial

OFC has been shown to be a core component of a risk-

sensitive processing network comprising the basal ganglia,

amygdala, parietal cortex, anterior cingulate cortex and in-

sular cortex (Fiorillo et al., 2003; Hsu et al., 2005; McCoy

and Platt, 2005; Preuschoff et al., 2006; Christopoulos

et al., 2009; Tobler et al., 2009; O’Neill and Schultz,

2010). Furthermore, the lateral part of the OFC has been

found to play a critical role in coding experienced value at

the time of monetary reward delivery (Sescousse et al.,

2010; Li et al., 2015). Lesion studies also emphasize the

crucial role of the OFC in guiding adaptive behaviour on

the basis of reward value, both in animals (Stopper et al.,

2014) and in humans (Hsu et al., 2005; Clark et al., 2008).

However, OFC lesions in humans are often extended and

are not restricted to the medial OFC or to the lateral OFC

only. Moreover, simple extrapolation from monkey to

human OFC is not straightforward because OFC homolo-

gies between species remain elusive (Öngür et al., 2003;

Petrides et al., 2012).

In addition, the timing of neural computation of reward

value and risk in the human OFC remains to be character-

ized. Scalp EEG and MEG studies have demonstrated that

the anterior cingulate cortex can process reinforcement in-

formation as early as 200 ms (Thomas et al., 2013), but

neural activity in the OFC cannot be measured directly

from the scalp, so the timing of neural activity in the

human OFC is still unclear. Furthermore, although func-

tional MRI can resolve brain activity changes in the order

of seconds, intracranial EEG recordings can provide rela-

tively more precise insights into the speed with which in-

formation is processed in the order of tens or hundreds of

milliseconds. In particular, given the relatively poor tem-

poral resolution of functional MRI, it has not been possible

to specify whether the risk signal emerges only during

reward anticipation or can also be found at the time of

reward outcome. Finally, when considering the role of spe-

cific subdivisions of the OFC, an open question is whether

risk is coded in the medial, lateral or in both parts of the

OFC. Several functional MRI studies have reported an en-

gagement of the lateral prefrontal or lateral OFC for risk

coding (Hsu et al., 2005; Tobler et al., 2007, 2009).

However, other functional MRI studies, together with

lesion studies and monkey electrophysiological studies do

not support such a clear-cut subdivision in the OFC. For

example, human functional MRI studies indicate that the

medial OFC responds to risk-related signal during antici-

pation of uncertain rewards (Abler et al., 2009), but risk

and reward value signals have been reported in the lateral

part of the monkey OFC (O’Neill and Schultz, 2010).

Building on these considerations, we performed an intra-

cranial EEG study to characterize the spatio-temporal dy-

namics of reward probability, risk and experienced value

signals in the human OFC. We recorded local field poten-

tials (LFPs) in epileptic patients with implanted depth elec-

trodes in the OFC while they learned to associate cues of

different slot machines with distinct reward probabilities. In

this experiment, participants made no choice that was ma-

terial to the reward outcome. Intracranial EEG provides a

unique opportunity to examine the functioning of the

human OFC, as it can circumvent some of the inherent

limitations of other techniques (e.g. brain lesion and func-

tional MRI), and combines the excellent temporal reso-

lution (in milliseconds) of electrophysiological methods

with high spatial resolution (Mukamel and Fried, 2012).

Materials and methods

Participants

Eight participants [four female; aged 19–61, average: 32,
standard deviation (SD): � 13.3 years] suffering from drug-
refractory partial epilepsy took part in our study. Two of
them were excluded due to very bad quality of the raw data.
The remaining six participants (four female; aged 19–61, aver-
age: 34, SD: � 15 years) had normal or corrected-to-normal
vision. All of them were fully informed of the purpose of the
study and provided their written informed consent. The study
was approved by the ethics committee at the Epilepsy
Department of the Neurological Hospital, where the record-
ings from all patients were collected. The patients were stereo-
taxically implanted with depth electrodes as part of a
presurgical evaluation. No seizures occurred in any of the pa-
tients during the 12 h preceding the experiment. In all six
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remaining patients, no seizure zones were found in the OFC,
so artefact contamination due to epileptogenic focus was
excluded. Specifically, Patient 1 suffered from right parietal
epilepsy, with a focus on the external right parietal cortex;
Patient 2 suffered from left parietal epilepsy, with a focus in
the left superior parietal cortex; Patient 3 suffered from left
frontal epilepsy, with a focus in the left cingulate gyrus; Patient
4 suffered from left frontal epilepsy, with a focus in F1 intern;
Patient 5 suffered from right frontal epilepsy, with a focus in
F1 (posterior lateral); and Patient 6 suffered from right tem-
poral epilepsy with a focus in the right external temporal
cortex. None of the patients had a visible lesion on MRI or
X-ray, which might have a bearing on OFC function through
closely connected regions. All of them were cured by corticect-
omy. The posology of the drugs were low because patients
were in a weaning period of antiepileptic drugs at the time
of testing, which was voluntarily prescribed at the time of
intracranial EEG exploration to increase the chance of the
emergence of epileptic seizures. Patients 1 to 6 were under
the following antiepileptic therapies: Patient 1, lamotrigine:
300 mg/24 h, topiramate: 100 mg/24 h; Patient 2, levetiracetam
250 mg/24 h, topiramate: 200 mg/ 24 h, clobazam: 10 mg/24 h;
Patient 3, levetiracetam: 2000 mg/24 h, gabapentine: 2400 mg/
24 h and clobazam: 10 mg/24 h; Patient 4, carbamazepine:
1200 mg/24 h, clobazam: 40 mg/24 h, primidone: 500 mg/24 h;
Patient 5, oxcarbazepine: 300 mg/24 h, levetiracetam: 1000 mg/
24 h; and Patient 6, carbamazepine: 100 mg /24 h.

Stereotaxic implantation and
electrode location

Depth electrodes used to record EEG activity were 0.8 mm
multi-contact cylinders (DIXI Medical). They were implanted
into several brain areas, perpendicular to the midsagittal plane
according to the Talairach and Bancaud’s (1973) stereotaxic
technique, described in earlier studies (Krolak-Salmon et al.,
2004). Contacts (5–15 per electrode) were 2 mm long
and spaced every 1.5 mm. For four patients having MRI-
compatible implanted electrodes, electrode locations were dir-
ectly identified with the post-implantation structural MRI
images containing the traces of the electrodes using the
Mango software (http://ric.uthscsa.edu/mango/index.html).
For the two others participants implanted with non-compatible
MRI electrodes, electrode locations were reconstructed onto
the subject’s individual MRI through the superimposition of
the frontal skull X-ray images with the electrodes in place on
the patient’s structural frontal MRI slices, corresponding to
each set of electrode coordinates, using in-house software
(‘Activis’ software, Lyon, France). We used the Chiavaras
atlas of the orbitofrontal cortex, defined in a normalized
Talairach space, to identify the exact locations of contacts
involved in reward value and risk information within the
OFC (Chiavaras et al., 2001). Additionally, each participant’s
contacts in the OFC with reward value (expected and experi-
enced value) and risk signals were shown in the normalized
MNI (Montreal Neurological Institute) brain space, respect-
ively to help compare with other brain imaging studies
(Ossandon et al., 2012). MNI and Talairach coordinates
were computed using the SPM (http://www.fil.ion.ucl.ac.uk/
spm/) toolbox.

Experimental design

Our current experimental protocol was the same as the one
used in our previous intracranial EEG study (Vanni-Mercier
et al., 2009). The experimental paradigm was implemented
with the software Presentation (version 9, Neurobehavioral
Systems). The participants performed the experiment in a
noise-shielded room in the hospital. Before starting the experi-
ment, the experimenter explained the procedures of the task to
each participant. The experiment was composed of two ses-
sions: a practice session and an experimental session contain-
ing eight runs, each of which was comprised of five blocks,
corresponding to the five different types of slot machines. Each
of them was associated with one of five reward probabilities
[P0 (having no rewards), P0.25, P0.5, P0.75, and P1 (always
having rewards)]. Thus, there were 40 different slot machines
in eight runs in total. The participants were presented with five
different kinds of slot machines randomly in each run. Each
block had the same structure, which contained 20 consecutive
trials. In each block, rewarded and unrewarded trials were
pseudorandomized for each participant. Each trial in a block
was composed of four phases as follows.

(i) Presentation of the slot machine phase. In the first phase, a pic-

ture comprising a single slot machine image and a fractal image

on top of the slot machine image was presented to the partici-

pants at the centre of the screen on the black ground. Each slot

machine included three spinners. At the beginning, the slot ma-

chine showed the symbols ‘7 – 7’ on each spinner separately from

left to right. The picture would be erased when the participants

made responses. The patients’ responses were self-paced.

(ii) Delay period phase. After the participants’ responses, the three

spinners in the slot machine started to roll from left to right

successively. When the first spinner stopped, the second would

subsequently start. Each of them stopped at an interval of 500 ms

successively. So, the delay period from responses to the stopping

of the third spinner was 1500 ms.

(iii) Rolling spinners’ outcome phase. In the third phase, the partici-

pants would know whether they had gotten reward or not ac-

cording to the information on the third spinner. There were two

types of spinners’ results: BAR BAR SEVEN (- - 7) and BAR

BAR BAR (- - -). The former indicated no subsequent reward

delivery and the latter depicted reward delivery subsequently.

In other words, the participants were fully informed of subse-

quent reward or no reward delivery according to information

shown on the third spinner. When the third spinner stopped, it

was still on the screen for another 500 ms, which was followed

by the reward or no reward delivery.

(iv) Reward or no reward delivery phase. In the last phase, either

reward (a picture of a 20E bill) or no reward (rectangle with

‘0E’ written inside which is the same size as the reward) was

shown at the centre of the screen for 1000 ms. The intertrial

interval was 1.5 s plus � 0.5 s (Fig. 1).

In the experiment, the participants were instructed to make
an estimation of the reward probability of each slot machine at
each trial on the basis of all the outcomes of the slot machines
that happened previously until the current trial (i.e. estimate of
cumulative probability since the first trial). Participants were
also informed that their current responses had no effect on
subsequent occurrence of reward. During the experiment, no
feedback relating to whether their estimation about the
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winning probability of the slot machine was correct or not
were shown to the participants. In addition, the task was
not concerned with the judgement about the predication of
the slot machine at the current trial. To perform the task,
participants were asked to make one of two button presses:
one button referring to having a high winning probability of a
slot machine and the other one indicating that, overall, the slot
machine had a low winning probability. Finally, at the end of
each block, the participants were asked to rate this slot ma-
chine on a scale from 0 to 4 (0 indicating no wining probabil-
ity and 4 meaning definitive 100% winning probability)
according to their global estimation of reward delivery.

Electrophysiological data recording

We started our experiment 8 days after the electrode implant-
ation. During this period, anticonvulsive drug treatment had
been drastically reduced for at least 1 week to record spontan-
eous epileptic seizures during continuous video-scalp EEG
recordings performed in specially equipped rooms. Patients
with depth recording electrodes seated in front of a computer
screen. Continuous-LFP recordings were collected using a 128-
channel device (Brain Quick System Plus; Micromed) at a sam-
pling rate of 512 Hz, amplified and filtered (0.1–200 Hz

bandwidth). The intracranial EEG was referenced to another
electrode contact located outside the brain, near the skull.
Those continuous EEG recordings were stored with the digital
event markers indicating the different events of the experiment.
Those event markers were composed of three categories: five
cue markers reflecting appearance of the slot machine (S1),
two response markers depicting the patients’ button responses
(R) and eight outcome markers [when the third spinner
stopped spinning (S2)]. Those five cue markers corresponded
to each of five reward winning probabilities of the slot ma-
chines (P0, P0.25, P0.5, P0.75, and P1). The two response
markers referred to the patients’ high or low winning prob-
ability estimation. And eight outcome markers were used to
differentiate all possible reward/no reward delivery corres-
ponding to five reward probabilities of the slot machines
[three slot machines associated with P0.25, P0.5 and P0.75
containing either rewarded or unrewarded trials, one (P1)
with only rewarded trials, and one (P0) with only unrewarded
trials].

Electrophysiological data analysis

All EEG data analysis was performed with EEGLAB 9.04
(http://sccn.ucsd.edu/eeglab/) (Delorme and Makeig, 2004)

Figure 1 Experimental paradigm. Each trial (self-paced) can be decomposed in four different phases: (i) Presentation of slot machines phase

(S1): participants were asked to estimate whether a given slot machine was frequently associated with 20E delivery or not by pressing one of two

keys. There were five types of slot machines, distinguishable by different fractals on their top, each one associated with one of five reward

probabilities (P0, P0.25, P0.5, P0.75 and P1), unbeknownst to the participants; (ii) Delay period phase (1.5 s): participants’ responses made three

spinners begin to roll around and successively stop every 0.5 s during 0.5 s; (iii) Rolling spinners’ outcome phase (0.5 s): the stopping of the third

spinner revealed the trial outcome (i.e. informing participants of subsequent reward or no reward delivery), which was indicated by two

configurations of the three spinners: ‘BAR, BAR, 7’ (no reward) or ‘BAR, BAR, BAR’ (rewarded); (iv) Reward/no reward delivery phase (1 s): a 20

E bill picture or a rectangle of the same size with ‘0 E’ written inside was shown to the participants. The intertrial interval (ITI) was 1.5 � 0.5 s.
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which runs on Matlab. In each participant, the raw EEG
recordings were first notch-filtered at a frequency of 50 Hz
based on the distribution of power spectrum. The resulting
EEG data were low-pass filtered (30 Hz), which was followed
by the exclusion of visual inspection of artefacts showing epi-
leptic spikes and other artefacts. Then the data were segmented
into three epochs: (i) cue-locked epochs lasting 1000 ms, which
started 200 ms prior to the presentation of the cues and ended
800 ms after the cue presentation; (ii) response-locked epochs
lasting 3000 ms that started 500 ms prior to the response and
ended 2500 ms after the response; and (iii) 1200 ms reward/
non-reward delivery-locked epochs lasting 1200 ms, which
started 200 ms prior to the reward/non-reward delivery and
ended 1000 ms after the delivery. Subsequently, data artefacts
were further removed. Specifically, to detect EEG segments
containing ‘improbable data’, we excluded the epochs having
5 SD from the epochs mean probability distribution for the
subsequent analysis. The 200–0 ms pre-cue, 500–200 ms pre-
response and 200–0 ms pre-delivery time window were used to
perform baseline correction. Before averaging, we further
excluded the epochs having the voltage above + 200 mV and
below �200 mV. Afterwards, these artefact-removed data were
submitted to averaging. First, the averaging of cue-locked EEG
signals was performed for each type of reward probability
(P0.25, P0.5, P0.75, and P1) and reward/non-reward deliv-
ery-locked EEG signals were averaged in each participant.
Then, based on previous studies bearing functional similarities
(Axmacher et al., 2010), the grand-averaged LFPs analysis
across all participants was derived from the contacts in the
OFC with maximal cue-locked LFP signals and reward/non-
reward delivery-locked LFP signal, respectively. After the
signal averaging step, we analysed the mean amplitude of
LFPs during the interval 400–600 ms after the cue presentation
and during the interval 0–800 ms after the reward/non-reward
delivery. Second, we performed signal averaging of EEG
recordings for each level of either unrewarded or rewarded
trials (unrewarded trials: P0, P0.25, P0.5, P0.75; rewarded
trials: P0.25, P0.5, P0.75, P1) in each participant to probe
risk signals in the OFC. The grand-averaged LFP analysis
across all participants was derived from the contacts in the
OFC with maximal risk signals from each participant. After
the signal averaging step, we analysed the peak amplitude of
LFPs during the interval 1000–2000 ms because risk signals
peaked in this time window.

For the group statistical analysis, regarding the reward prob-
ability and experienced value signals, we performed two sep-
arate one-way repeated-measures ANOVA on the amplitudes.
Tukey’s HSD post hoc comparisons were then carried out to
clarify the significant difference between cue-induced LFP amp-
litudes as a function of probability when the main effect was
significant. Regarding risk signals, under unrewarded and re-
warded trials, we performed two-way repeated-measures
ANOVA on the peak amplitudes with reward probability
and outcome (reward/unreward) as independent factors.
Tukey’s HSD post hoc comparisons were then carried out to
clarify the significant difference between risk-induced LFP
amplitudes as a function of probability and outcome.

Behavioural data analysis

Response times were analysed as a function of the reward
probabilities of the slot machines and the trial rank.

The percentages of correct estimations of the high/low prob-

ability of winning for each slot machine were analysed as a

function of trial rank (1–20) averaged across participants and
runs. The estimations were defined as correct for the slot ma-

chines with low reward probabilities (P0 and P0.25) if partici-

pants identified them as ‘low winning’ and were defined as

correct for the slot machines with high reward probabilities
(P0.75 and P1) if participants identified them as ‘high win-

ning.’ The slot machine with a reward probability of P0.5

had neither ‘low’ nor ‘high’ winning probability. The choice
being binary, the percentage of 50% estimates of ‘high,’ or

symmetrically, of ‘low’ winning probability corresponded to

the correct estimate of winning probability for this slot
machine.

For the probabilities P0, P0.25, P0.75, and P1, the trial rank
when learning occurred was defined as the trial rank with at

least 80% correct responses and for which the percentage of

correct estimation did not decrease below this limit for the

remaining trials. For the probability P0.5, the trial rank
when learning occurred was defined as the trial rank with

50% of the responses being either ‘high’ or ‘low’ winning

probability, with responses then oscillating around this value
for the remaining trials. Moreover, results from participants’

classifications of the slot machines at each of the 20 successive

presentations of a single type of slot machine within runs were
compared with their estimations made at the end of each

block.

Results

Behavioural results

Response times

A two-way ANOVA with reward probability (P) of the

slot machines and trial rank (R) as repeated-measures

was performed on the response times. The results re-

vealed that reward probability had a significant influence

on the participants’ response times [F(4,20) = 8.15,

P5 0.001]. A Tukey’s HSD post hoc test on reward

probability showed that the mean response times for

P0.5 (maximal risk) was significantly slower than for

all other lower levels of risk (P0, P0. 25, P0.75 and

P1), indicating that the participants’ response times

were modulated by the levels of risk (Fig. 2A). The

main effect of trial rank on response times also reached

statistical significance [F(19,95) = 11.68; P50.001], but

the reward probability � trial rank interaction effect was

not significant [F(76,380) = 1.64; P = 0.23]. Note that

due to the task being self-paced and that we did not set

an explicit incentive in the task, the sensitivity of re-

sponse times to the cue may potentially be low. Despite

this, we still observed a modulation of response times by

reward probability in the absence of explicit incentive in

the task. This reflects that participants were slower for

the slot machine with P = 0.5, being more uncertain re-

garding the outcome of this slot machine.
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Estimation of reward probability

We performed a two-way repeated measures ANOVA on

the percentage of correct estimates of the probability of

winning, including reward probability (P) and trial rank

(R) as factors. The learning curves corresponding to the

correct estimates for high (slot machines P0.75 and P1)

and low (slot machines P0 and P0.25) probability of win-

ning are illustrated in Fig. 2B and C. The results revealed

that reward probability and trial rank influenced the cor-

rect estimation of slot machines, respectively

[F(4,20) = 69.18, P5 0.001; F(19,95) = 28.21; P5 0.001].

Moreover, there was an interaction reward probabil-

ity � trial rank [F(76,380) = 1.94; P5 0.001], indicating

that reaching the learning criterion (480% correct estima-

tions) depended on reward probability. The estimates of the

slot machines with reward probabilities P0 and P1 reached

the learning criterion after the second and first trial, re-

spectively (480% correct estimation). In contrast, the esti-

mates of the slot machines with reward probabilities P0.25

and P0.75 reached the criteria for learning after the fourth

trial (480% correct estimations). The estimation of the

reward winning probability P0.5 oscillated around 50%

as ‘high’ or ‘low’ winning probability. Furthermore, the

classification of the slot machines based on the scores

(scale range: 0–4) confirmed that participants learned the

actual reward probability (correct estimation: 98% for P0,

100% for P1, 83% for P0.25, 88% for P0.75, and 90%

for P0.5).

Electrophysiological results

Reward probability signal

As indicated in Fig. 3A, positive or negative LFPs emerged

in the OFC following the cue presentation. These signals

began �400 ms after onset of the cue and continued until

�600 ms. We performed a one-way repeated-measures

ANOVA on the mean amplitude in this time window

with reward probability as an independent factor. Our ana-

lysis revealed a significant main effect of reward probability

[F(4,20) = 5.45; P5 0.005]. Furthermore, Tukey’s HSD

Figure 2 Behavioural performance. (A) Mean reaction times as a function of reward probability. (B) Mean learning curves averaged across

participants, expressed as the mean percentage of ‘high winning probability’ (C) and ‘low winning probability’. **P5 0.01, *P5 0.05. Error bars

indicate SEM. Note that participants’ task was simply to estimate at each trial the reward probability of each slot machine at the time of its

presentation, based upon the previous outcomes of the slot machine until this trial. To do so, participants had to press one of two response

buttons: ‘high winning probability’ and ‘low winning probability.’ In particular, the estimation of the slot machine with P = 0.5 of winning reached

the learning criterion (i.e. 480% correct estimations) after the seventh trial (estimations oscillating around 50% as ‘high’ or ‘low’ probability of

winning).
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post hoc tests revealed larger amplitudes for P1 than for

P0.5, P0.25 and P0 in this time window (Fig. 3B). The

amplitude of these LFPs increased monotonically with

reward probability, consistent with the characteristics of

an expected value signal. Note that the LFP signals

observed at the cue are unlikely to represent the neural

response to low level stimulus attributes of the fractal dis-

played on the slot machine because each of these fractals

was associated with a distinct reward probability in each

block, and the LFPs associated with each probability rep-

resents the mean response to all the different fractals having

the same reward probability averaged over the eight runs.

Risk signal

Under both rewarded and unrewarded conditions, robust

risk signals were observed, which started from the late

reward anticipation phase (1000–1500 ms), i.e. after the

second spinner stopped, reaching a maximum during the

rolling spinners’ outcome phase (1500–2000 ms) (Fig. 4A

and B, shaded areas). These risk-related LFP signals

peaked at 25.47 � 40.85 ms (unrewarded trials) and

89.11 � 48.93 ms (rewarded trials), respectively, after the

third spinner stopped (i.e. at the rolling spinners’ outcome

phase). Then, the signals began to gradually decrease during

the reward/no reward delivery phase (2000–2500 ms). A

two-way ANOVA was performed on the peak amplitudes

during the rolling spinners’ outcome phase with reward

probability and outcome as independent factors, both for

the rewarded and unrewarded conditions. The results re-

vealed a main effect of reward probability

[F(3,15) = 10.28; P5 0.005], but no main effect of outcome

[F(1,5) = 0.54; P4 0.1] and no reward probability � out-

come interaction [F(3,15) = 1.20; P4 0.1) in the outcome

phase time window. More importantly, Tukey’s HSD post

hoc tests revealed significantly larger LFP amplitude elicited

by P0.5 as compared with other reward probabilities in this

same time window (Fig. 4C). The peak LFP amplitudes of

rewarded and unrewarded trials followed an inverted U-

curve relationship with reward probability, varying non-lin-

early with reward probability, being maximal when risk is

highest (P = 0.5), and minimal when risk is lowest (P = 0

and P = 1), during both the late phase of reward anticipation

and during the rolling spinners’ outcome phase. Moreover, it

could be argued that the risk signal is correlated with ease of

learning in our study. To rule out this hypothesis, we ran an

additional analysis on the event related potentials for the last

10 trials of each run, after learning of stimuli-outcomes as-

sociations was established. We observed that the amplitudes

of risk signals in the OFC follow a similar inverted U-shaped

relationship as a function of reward probability. Specifically,

we found a main effect of reward probability

[F(3,15) = 8.62; P50.01], but no main effect of outcome

type [F(1,5) = 0.41; P4 0.1] and no reward probabil-

ity � outcome interaction [F(3,15) = 0.86; P40.1]. More

importantly, Tukey’s HSD post hoc tests revealed signifi-

cantly larger LFPs amplitude elicited by P0.5 as compared

with other reward probabilities (Supplementary Fig. 1).

Finally, we performed a two-way ANOVA on the peak

LFP amplitudes with reward probability and outcome as

independent factors and with response time as a covariate

of no interest to control for the possibility that LFPs track

response times rather than risk. The results revealed a main

effect of reward probability [F(3,12) = 6.43; P5 0.05], but

no main effect of outcome [F(1,4) = 0.15; P4 0.1] and no

reward probability � outcome interaction [F(3,12) = 0.47;

P4 0.1] in the outcome phase time window. More import-

antly, Tukey’s HSD post hoc tests revealed significantly

larger LFP amplitudes elicited by P0.5 as compared with

other reward probabilities in this same time window. The

peak LFP amplitudes of rewarded and unrewarded trials

followed an inverted U-curve relationship with reward

probability, varying non-linearly with reward probability,

being maximal when risk is highest (P = 0.5), and minimal

when risk is lowest (P = 0 and P = 1), during both the late

Figure 3 Reward probability coding in the human OFC. (A) The reward probability-related orbitofrontal LFPs signals occurred after the

presentation of the cues, which were obtained by averaging the contacts with maximal reward probability-like potentials across participants. (B)

The monotonic increase of LFP amplitude with reward probability. *P5 0.05. Error bars indicate SEM.
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phase of reward anticipation and during the rolling spin-

ners’ outcome phase. This result clearly demonstrates that

the OFC tracks risk information rather than response

times, as the OFC still tracks risk when regressing out re-

sponse times.

Experienced value signal

We observed a robust experienced value-related signal in

the OFC. As shown in Fig. 5, a difference between reward

and non-reward delivery LFPs emerged rapidly in the OFC

after the presentation of the bill or after 0 E. This signal

started immediately at the time of reward/non-reward de-

livery and continued until �800 ms. A one-way repeated-

measures ANOVA in this time window with reward/non-

reward delivery as an independent factor revealed a main

effect of rewarded outcome [F(1,5) = 19.5; P5 0.01]. It

could be argued that the higher LFP amplitudes observed

at the time of reward delivery relative to the no-reward

delivery could be confounded with feedback updating of

one’s predictions. However, if this was the case, one

would expect the OFC to encode a reward prediction

error, known to show decreasing activity with increasing

reward probability at the time of outcome (Fiorillo et al.,

2003). When performing such analysis, we found no con-

tact responding as a prediction error in the OFC. It should

be noted that the fourth phase does not uniquely encode

reward/no reward delivery, because it differs from the third

phase in containing an image of money. Any difference

between these two phases is therefore better explained by

associations with the image of money than with perceived

reward outcome, which is signalled by the two phases

equally.

Figure 4 Risk coding in the human OFC. (A and B) The risk-related orbitofrontal LFP signals occurred during the late phase of reward

anticipation and during the rolling spinners’ outcome phase for each type of five slot machines under rewarded condition (A) and unrewarded

condition (B). The signals were obtained by averaging the contacts with maximal risk-like potentials across subjects. (C) Inverted U shape

relationship of LFP amplitude with reward probability. Mean amplitudes of LFPs during the rolling spinners’ outcome phase, as a function of reward

probability, varied as an inverted U-shaped curve, both for rewarded and unrewarded conditions. **P5 0.01, *P5 0.05. Error bars indicate SEM.
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Proportion of contacts responding to different

signals

Among our participants, four had unilateral implantation

in the left OFC and two had unilateral implantation in the

right OFC. We recorded from a total of 83 contacts of six

depth electrodes covering the OFC from the most medial to

the lateral part. The maximal reward probability-like

signal, maximal risk-like signal and maximal experienced

value-like signal were all defined as the maximal positive or

negative peak event-related potentials in their respective

time windows. That is, the contact with the maximal

peak reward probability signal was in a window 400–

600 ms after the onset of the cue; the contact with the

maximal peak risk signal was in a window of 1000–

2000 ms after the motor response; and the contact with

the maximal peak experienced value signal was in a

window of 0–800 ms after the onset of reward delivery.

The contacts with maximal reward probability signals

(Fig. 6A), maximal risk signals (Fig. 6C) and maximal

experienced value signals (Fig. 6E) are shown in red on

each participant’s anatomical images in Talairach space.

Coordinates of the corresponding contacts showing max-

imal reward probability, risk and experienced value signals

are listed in Supplementary Tables 1–3, respectively, for

each participant. To specify the exact locations of the con-

tacts responding to the expected value, risk and experi-

enced value signals in all participants, we converted the

Talairach anatomical locations of the contacts responding

to these three signals to the normalized MNI (Montreal

Neurological Institute) space. The corresponding converted

contacts are shown on a human OFC MNI template for

each type of these three signals (Fig. 6B, D and F).

The definition of the medial and lateral OFC was based

on previous studies (Zald et al., 2014). Specifically, the

medial orbital sulcus was used as the primary division be-

tween the medial OFC and lateral OFC. We found 29 con-

tacts (35% of total number of contacts) coding reward

probability. Among them, 11 contacts were distributed in

the medial OFC and the remaining 18 contacts were in the

lateral OFC (Fig. 6B). There was no significant difference in

the distribution of reward probability signals between the

medial and lateral OFC (chi-square test, P = 0.06), suggest-

ing that the medial and lateral OFC played a similar role in

coding reward probability information. With regard to the

location of contacts responding to risk, we found 22 con-

tacts (27% of total number of contacts) coding risk infor-

mation. Among them, eight contacts were distributed in the

medial OFC and the remaining 14 contacts were located in

the lateral OFC (Fig. 6D). Again, a chi-square test did not

reveal a statistically significant difference in the distribution

of risk signals between the medial and lateral OFC

(P = 0.21), indicating that both parts of the OFC played a

similar role in coding risk signals. Finally, regarding the

location of experienced value, we found 45 contacts

(54% of total number of contacts) responding to this

signal. Among them, 18 contacts were distributed in the

medial OFC and the remaining 27 contacts were in the

lateral OFC (Fig. 6F). We observed a significant difference

in the distribution of experienced value signal between the

medial and lateral parts of the OFC (chi-square test,

P5 0.001) (Fig. 6G), indicating that the experienced

value signal was more predominantly localized in the lat-

eral OFC.

Finally, the number of contacts coding reward value (ex-

pected and experienced value), risk information or both are

illustrated in Fig. 6H. As shown in this figure, there were

74 contacts coding reward value and 22 contacts coding

risk information. Among them, nine contacts were involved

in coding both reward value and risk information.

Discussion
To the best of our knowledge, the present study provides

the first intracranial EEG evidence characterizing the

neural dynamics of expected value, risk and experienced

value signals in the humans OFC during a probabilistic

reward learning task. Several important results emerge

from the present study: (i) different anatomical sub-re-

gions of the OFC are predominantly involved in coding

these reward information signals; (ii) the reward prob-

ability signal emerges �400 ms after cue presentation;

(iii) the risk signal is reflected in slowly growing LFPs

during the late phase of reward anticipation after cue

presentation and during the rolling spinners’ outcome

phase; and (iv) the experienced value is coded immedi-

ately at the time of reward delivery. Together, these re-

sults shed new light on the spatio-temporal dynamics of

reward probability, risk and experienced value represen-

tations in the human OFC.

Figure 5 Experienced value coding in the human OFC. The

experienced value-related orbitofrontal LFP signals occurred im-

mediately at the time of reward/non-reward delivery. The signals

were obtained by averaging the contacts with maximal experienced

value-like potentials across subjects. The amplitude elicited by

reward delivery was larger than that elicited by non-reward delivery.
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Figure 6 Location of signals increasing with reward probability, risk and experienced value in the human OFC. (A) Coronal MRI

slices from the six participants showing locations of contacts (in red) yielding a maximal reward probability signal during the time window between

400-600 ms after the onset of the cue. Intracranial electrodes in the OFC are shown in the Talairach brain space. (B) The recording contacts

across all participants with LFP signals elicited by reward probability are shown in a normalized MNI brain space. For each patient, the contacts

exhibiting the maximal LFPs amplitudes with increasing reward probability during the time window between 400–600 ms after the onset of the cue

are shown as red dots. The black dots denote the contacts exhibiting a significant increase of the reward probability signal in this same time

window. (C) Coronal MRI slices from the six participants showing locations of contacts (in red) yielding a maximal risk signal between 1000–

2000 ms after the motor response. (D) The recording contacts across all participants with risk LFP signals are shown in a normalized MNI brain

space. For each patient, the contacts exhibiting the maximal risk LFPs amplitudes during the time window between 1000–2000 ms after the motor

response are shown as red dots. The black dots depict the contacts exhibiting a significant risk signal in this same time window. (E) Coronal MRI

slices from the six participants showing locations of contacts (in red) yielding a maximal experienced value signal between 0–800 ms after the

onset of reward delivery. (F) The recording contacts across all participants with LFP signals elicited by experienced value are shown in a

normalized MNI brain space. For each patient, the contacts exhibiting the maximal experienced value LFP amplitudes during the time window

between 0–800 ms after the onset of reward delivery are shown as red dots while the black dots denote the contacts exhibiting a significant

experienced value signal in this same time window. (G) Relative frequency of contacts with experienced value signals in the medial and lateral

parts of the OFC. ***P5 0.001. (H) Pie chart of the percentage of contacts coding reward value and risk information in the human OFC.

1304 | BRAIN 2016: 139; 1295–1309 Y. Li et al.

 by guest on N
ovem

ber 10, 2016
http://brain.oxfordjournals.org/

D
ow

nloaded from
 

http://brain.oxfordjournals.org/


Reward probability coding in the
orbitofrontal cortex

Electrophysiological recordings in animals indicate that

value is coded in the firing rates of orbitofrontal neurons

(Padoa-Schioppa and Assad, 2006; Wallis, 2012). A large

body of evidence from human functional MRI studies also

confirms that reward probability is coded in this region

(Rolls et al., 2008; Kahnt et al., 2010). By overcoming

some of the shortcomings associated with functional

MRI, our results extend these prior findings in several

ways. First, we found that maximum amplitude of this

signal increased monotonically with reward probability,

demonstrating directly that the OFC indeed codes the

reward probability after the presentation of the slot machine.

Second, the precise time resolution of our intracranial EEG

recordings reveal that such reward probability signal starts to

rise around 400 ms after cue presentation in the medial and

lateral OFC for higher reward probabilities (P = 0.75 and

P = 1). This latency is similar to the peak latency of the

firing rates of neurons coding reward probability previously

observed in monkey OFC neurons (O’Neill and Schultz,

2010). This observation indicates that the OFC codes the

reward probability relatively late after the presentation of

the slot machine. In animals, the latency of the reward prob-

ability signal in the OFC is also slower than the reward prob-

ability response from the midbrain dopaminergic neurons

(Fiorillo et al., 2003) and neurons in the visual cortex

(Shuler and Bear, 2006). Our finding of slowly rising

reward probability responses in the human OFC is also con-

sistent with current conceptualizations of OFC-dopamine

neuron relationships supporting that the role of the OFC is

to represent states in partially observable scenarios

(Takahashi et al., 2011; Metereau and Dreher, 2015).

Risk coding in the orbitofrontal
cortex

The risk signal appears both before and after risk is

resolved. This finding is consistent with results from a

recent single-unit electrophysiological study in monkey

OFC (O’Neill and Schultz, 2010). During the rolling spin-

ners’ outcome phase, the peak LFP amplitude followed an

inverted U-curve relationship with reward probability, both

for rewarded and unrewarded conditions. Data from

neurophysiological studies in non-human primates and

human functional MRI studies have implicated midbrain

dopaminergic neurons and their cortical and subcortical

projections in coding risk information (McCoy and Platt,

2005; Dreher et al., 2006; Preuschoff et al., 2006; Tobler

et al., 2009; Vanni-Mercier et al., 2009; Mohr et al., 2010;

Rudorf et al., 2012; Sugam et al., 2012; Wright et al.,

2012; Monosov and Hikosaka, 2013). Within this risk-sen-

sitive circuit, the literature in non-human primates suggests

that risk-sensitive neurons in the OFC may transmit an

early signal to other brain structures responding to risk

information, such as dopamine neurons, anterior insula

and anterior cingulate cortex, for further processing. This

argument is supported by the fact that risk response latency

in the monkey OFC (O’Neill and Schultz, 2010) appears to

be shorter than the risk-related responses in dopamine neu-

rons (Fiorillo et al., 2003) and cingulate neurons (McCoy

and Platt, 2005). Moreover, anticipation-related firing rates

in dopamine neurons depend on the OFC inputs in rodents

(Lodge, 2011; Takahashi et al., 2011). Thus, the early la-

tency of the risk response in the OFC may allow down-

stream neurons to participate in detecting risk information

in decision situations. It is likely that during phylogeny, the

circuit involved in coding risk information has been well

preserved across species. Confirming this hypothesis, the

risk-elicited LFPs observed in the human OFC occurred

early after the second spinner of the slot machine stopped.

Although human intracranial EEG recordings of risk

coding are scarce, we recently observed a risk-related LFP

signal in the human hippocampus during the rolling spin-

ners’ outcome phase, peaking around 410 ms after the third

spinner stopped, using the same task as the one described

in the present study (Vanni-Mercier et al., 2009). Thus, the

latency of risk-elicited LFPs in the human hippocampus is

slower than that of the risk signal observed in the human

OFC. Furthermore, in another human intracranial EEG

study, unexpected events enhanced early (187 ms) and

late (482 ms) hippocampal potentials as well as a late

(475 ms) nucleus accumbens potential (Axmacher et al.,
2010). Moreover, during a reward learning task, LFPs re-

corded in the nucleus accumbens were higher for risky

compared to safe stimulus �400–600 ms after the cue pres-

entation as well as experienced value at the time of feed-

back (Cohen et al., 2008). In addition, a recent human

intracranial EEG study recording dopamine neurons with

microelectrodes reported relatively late latency (�200 ms

after the onset of feedback) of firing rates after unexpected

gains (Zaghloul et al., 2009). Together, these findings in

humans indicate that the risk signal in the OFC may con-

stitute an early component of the risk-related system in

humans, which transfers risk information to other compo-

nents of the system such as the midbrain, ventral striatum

and hippocampus. Although the time resolution of the

blood oxygen level-dependant (BOLD) signal does not

allow us to make precise inferences about timing, it

should be noted that the same network, including the

OFC, together with the ventral striatum and hippocampus,

has been shown to code risk when varying reward prob-

abilities (Abler et al., 2009). It has also been reported that a

risk BOLD signal is observed relatively early in the medial

OFC, while expected value is coded in the hippocampus by

a relatively later BOLD response (Abler et al., 2009).

In addition, the observation that most of the risk-coding

contacts in the human OFC differ from the contacts

coding reward value (expected and experienced value) ex-

tends to the neuronal population level (LFPs domain)

from previous single-unit recordings in monkeys showing

that most orbitofrontal risk responses are distinct from
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value responses (O’Neill and Schultz, 2010). Consistent

with these findings, other studies have also reported that

the population of neurons in the OFC, which are sensitive

to probabilistic, costly or delayed rewards are insensitive

to absolute reward values (Roesch et al., 2006; Kennerley

et al., 2009).

Finally, our results offer an interpretation of the classical

dysfunctional decision-making under risky conditions fol-

lowing damage of the OFC in humans (Hsu et al., 2005;

Clark et al., 2008). Changes in decision-making due to the

OFC lesions may result from an inability to accurately pro-

cess risk information because OFC patients do not have the

risk signal propagated by the OFC neurons. Such impaired

risk processing would constitute a parsimonious explan-

ation for the deficits in risky decision-making following

damage to the OFC and would provide a potential patho-

physiological account for these striking and severely inca-

pacitating behavioural deficits.

Experienced value and comparison
with the dopaminergic system

The increased LFP amplitudes observed for reward com-

pared to no-reward delivery confirms that the OFC codes

an experienced value signal. Previous human functional

MRI and monkey electrophysiological findings have

shown that experienced value is coded by the OFC as

well as the amygdala and ventral striatum (Hikosaka

et al., 2008; Sescousse et al., 2010). More recent functional

MRI findings have reported functional dissociations in the

OFC according to rewards types: the anterior OFC is more

specifically engaged by secondary rewards than primary

rewards, while the posterior OFC is more engaged by pri-

mary than secondary rewards (Sescousse et al., 2013; Li

et al., 2015). Because the present study did not vary

reward types, we cannot ascertain whether these functional

divisions can be confirmed using intracranial EEG.

However, we did observe an experienced value signal in

the anterior OFC for monetary rewards.

Note that we did not observe a linear decrease in LFP

amplitudes with increasing reward probability at the time

of reward outcome, which would have been expected if

OFC coded a reward prediction error. Thus, the experi-

enced value signal observed in the OFC is not concomitant

with an OFC reward prediction error, as coded by mid-

brain dopaminergic neurons showing a monotonic decrease

in neuronal activities with increasing reward probability

(Fiorillo et al., 2003). Confirming our findings, at the

single cell level, a monkey electrophysiological study

showed that many vmPFC/OFC neurons do not code

reward prediction error (Monosov and Hikosaka, 2012).

Rather, it seems that vmPFC/OFC neurons are linked to

the processing of the reception of their preferred outcomes

(Bouret and Richmond, 2010; Noonan et al., 2010;

Rudebeck and Murray, 2011b; Rushworth et al., 2011).

Functional interpretation

The OFC is crucial for changing established behaviour in

the face of unexpected outcomes. Historically, this function

has been attributed either to the role of the OFC in re-

sponse inhibition or to the fact that the OFC is a rapidly

flexible associative-learning area (Schoenbaum et al., 2009;

Rudebeck and Murray, 2011a, b). However, recent data

indicate instead that the OFC is not crucial for response

inhibition. Rather, it is key to signal outcome expectancies,

as demonstrated by excitotoxic, fibre-sparing lesions con-

fined to OFC, which do not alter behavioural flexibility

(Rudebeck and Murray, 2011b). Thus, the function of

the OFC in signalling expected outcomes can also explain

its crucial role in changing behaviour in the face of unex-

pected outcomes (Rudebeck and Murray, 2011a). Our

intracranial EEG findings in humans offer an electrophysio-

logical basis to understand that this general function is

based on different responses from neuronal populations

as observed with LFPs, including expected value, risk and

experienced/outcome value coding.

Based on brain imaging, lesion and anatomical studies, the

lateral OFC has been proposed to be important for stimulus–

value learning that is critical for motivating actions towards

rewards (Noonan et al., 2010; Rudebeck and Murray,

2011a), whereas ventral vmPFC may be concerned with

evaluation, value-guided decision-making and maintenance

of choices over successive decisions (Noonan et al., 2010;

Rudebeck and Murray, 2011b). A study recording neurons

from the vmPFC and OFC in a task in which neuronal activity

could be linked to external (stimulus value) or internal mo-

tivational factors (e.g. satiety) found that the vmPFC coded

internal motivational processes, whereas the OFC coded ex-

ternal environment-centred value information (Bouret and

Richmond, 2010). These distinct functions may be based on

specific connectivity of OFC subdivisions. The OFC, situated

laterally to vmPFC, receives inputs from sensory systems

(Cavada et al., 2000), whereas the vmPFC does not (Barbas

et al., 1999). Moreover, the OFC and vmPFC project to dif-

ferent regions of the striatum: the vmPFC has dense projec-

tions to the nucleus accumbens (Öngür and Price, 2000),

whereas the OFC does not (Haber et al., 1995). Both the

OFC (Brodmann areas 13 and 11) and vmPFC have extensive

projections to some limbic structures, such as the amygdala

(Öngür and Price, 2000), and the vmPFC has particularly

strong projections to the hypothalamus (Öngür and Price,

2000).

In the present study, we observed that the experienced

value signal was predominantly localized in the lateral

OFC, although this signal was coded throughout OFC. In

contrast, the medial and lateral OFC played similar roles in

coding risk and reward probability signals. These findings

are mostly consistent with functional MRI studies reporting

both the medial and lateral OFC activity for risk (Tobler

et al., 2007; Abler et al., 2009) and for expected value

(Rolls et al., 2008; Sescousse et al., 2015) while lateral

1306 | BRAIN 2016: 139; 1295–1309 Y. Li et al.

 by guest on N
ovem

ber 10, 2016
http://brain.oxfordjournals.org/

D
ow

nloaded from
 

Deleted Text: a
Deleted Text: a
http://brain.oxfordjournals.org/


OFC activity has been mostly observed for experienced

value (Sescousse et al., 2013, 2015; Li et al., 2015).

An important functional dissociation within the OFC is

that the medial OFC is involved in positive reinforcers,

whereas the lateral OFC would be concerned with the

evaluation of punishments (Kringelbach and Rolls, 2004;

Kringelbach, 2005). Because the present study only tested

rewards and not punishments, we cannot judge whether

this medial-lateral functional distinction in the OFC is

valid. However, recent Pavlovian conditioning studies asso-

ciating abstract cues to different types of rewards and pun-

ishments did not report such dissociation but found a

common engagement of the medial OFC in expectation of

rewards and punishments (Plassmann et al., 2010;

Metereau and Dreher, 2015). This is further corroborated

by a recent single-unit recording study in monkeys report-

ing no convincing evidence for valence selectivity in the

OFC (Rich and Wallis, 2014) and a recent meta-analytical

connectivity modelling study reporting convergent co-

activations with other areas in the medial and lateral

OFC during reward tasks (Zald et al., 2014).

Conclusion
Our intracranial EEG results bridge the gap between neu-

roimaging studies in healthy humans (Tobler et al., 2007,

2009) and electrophysiological recordings in animals

(O’Neill and Schultz, 2010). These findings shed new

light on the spatio-temporal dynamics underlying reward

value and risk coding in the human OFC. We provided

evidence that the brain computes separate reward-related

information signals when expecting and experiencing re-

warding events, at a sub-second time scale. Although our

study focused on a no-choice situation, we believe that it

has important implications for disorders of decision-making

under risk situations. Indeed, as proposed recently in an

electrophysiological recording monkey study investigating

risk signal in a no-choice situation, changes in decision-

making under uncertainty due to the orbitofrontal

damage may result from an inability to accurately process

risk information because these patients do not have the risk

signal propagated by OFC neurons (O’Neill and Schultz,

2010).
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program “Investissements d’Avenir” (ANR-11-IDEX-

0007) operated by the French National Research Agency

(ANR). Y.L. was supported by a PhD fellowship obtained

by JC D from Pari Mutuel Urbain (PMU). JCD was also

funded by the EURIAS Fellowship Programme, the

European Commission (Marie-Sklodowska-Curie Actions -

COFUND Programme - FP7) and the Institute for

Advanced Study ‘Hanse-Wissenschaftskolleg’. We thank

the staff of the epilepsy department (Neurological hospital,

Lyon) for helpful assistance with data collection.

Supplementary material
Supplementary material is available at Brain online.

References
Abler B, Herrnberger B, Gron G, Spitzer M. From uncertainty to

reward: BOLD characteristics differentiate signaling pathways.

BMC Neurosci 2009; 10: 154.

Axmacher N, Cohen MX, Fell J, Haupt S, Dümpelmann M, Elger CE,
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