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Decision Threshold Modulation in the Human Brain

Philippe Domenech and Jean-Claude Dreher
Cognitive Neuroscience Center, Reward and Decision-Making Group, Centre National pour la Recherche Scientifique, Unité Mixte de Recherche 5229,
69675 Bron, France and Université Lyon 1, 69003, Lyon, France

Perceptual decisions are made when sensory evidence accumulated over time reaches a decision threshold. Because decisions are also
guided by prior information, one important factor that is likely to shape how a decision is adaptively tuned to its context is the predict-
ability of forthcoming events. However, little is known about the mechanisms underlying this contextual regulation of the perceptual
decision-making process. Mathematical models of decision making predict two possible mechanisms supporting this regulation: an
adjustment of the distance to the decision threshold, which leads to a change in the amount of accumulated evidence required to make a
decision, or a gain control of the sensory evidence, leading to a change in the slope of the sensory evidence accumulation. Here, we show
that predictability of the forthcoming event reduces the distance to the threshold of the decision. Then, combining model-driven fMRI
and the framework of information theory, we show that the anterior cingulate cortex (ACC) adjusts the distance to the decision threshold
in proportion to the current amount of predictive information and that the dorsolateral cortex (DLPFC) codes the accumulation of
sensory evidence. Moreover, the information flow from the ACC to the DLPFC region that accumulates sensory evidence increases when
optimal adjustment of the distance to the threshold requires more complex computations, reflecting the increased weight of ACC’s
regulation signals in the decision process. Our results characterize the respective contributions of the ACC and the DLPFC to contextually

optimized decision making.

Introduction

Recent advances in neuroscience and mathematical psychology
have begun to unravel the neurobiological mechanisms underly-
ing decision making (Gold and Shadlen, 2007). Perceptual deci-
sion making, the ability to select a specific action based on our
perception, proceeds from the integration of sensory evidence to
a categorical choice between alternatives (Smith and Ratcliff,
2004; Lo and Wang, 2006; Bogacz, 2007a). In sequential sampling
models, this gradual gathering of sensory information favoring a
particular choice is defined as a drift of an abstract decision vari-
able toward a decision threshold. A choice is made when a deci-
sion variable is equal to its decision threshold (Carpenter and
Williams, 1995; Hanes and Schall, 1996; Usher and McClelland,
2001). These mathematical models of decision making received
renewed interest after the demonstration by monkey electro-
physiological studies that perceptual choices are made when the
ramping activity of neural populations in the dorsolateral pre-
frontal cortex (DLPFC) and the lateral intraparietal (LIP) area
reaches a given threshold (Hanes and Schall, 1996; Kim and
Shadlen, 1999; Huk and Shadlen, 2005; Hanks et al., 2006). The
ramping rate of this neural activity, which represents the accu-
mulation of sensory evidence, correlates with the decision vari-
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able predicted by sequential sampling models. In humans, fMRI
studies confirmed the involvement of a similar DLPFC—intrapa-
rietal network in coding the decision variable (Heekeren et al.,
2004; Forstmann et al., 2008; Ivanoff et al., 2008; Tosoni et al.,
2008; van Veen et al., 2008).

One important factor that is likely to shape how a decision is
adaptively tuned to its context is the predictability of the forth-
coming event (Luce, 1991; Dayan and Abbott, 2001; Harrison et
al., 2006; Doya, 2008). However, it remains unclear how decision
making is modulated by this predictive information at both the
behavioral and the neural levels. Sequential sampling models pre-
dict two mechanisms that modulate the decision based on con-
textual information (Carpenter and Williams, 1995; Reddi et al.,
2003): (1) An adjustment of the distance to the decision thresh-
old, which leads to a change in the amount of evidence required
to make a decision, but no variation in the slope of the decision
variable. According to this mechanism, higher predictability of
forthcoming events would reduce the distance to the decision
threshold (Fig. 1a, top panels). (2) An adjustment of the gain of
sensory evidence, leading to a change in the slope of the decision
variable, but not in the distance to the threshold. According to
this hypothesis, higher predictability would increase the slope of
the decision variable (Fig. 1a, bottom panels).

Here, we manipulated the amount of contextual informa-
tion available to predict which stimulus is going to appear next
(Fig. 1b). This allowed us to distinguish between these two
hypotheses by characterizing the computational mechanisms
underlying the effect of predictability on decisions. Then, hav-
ing found that predictability modulates the distance to the
threshold of the decision and not the gain control of sensory
evidence, we identified the brain regions involved in this reg-
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ulation, as well as those coding the deci- a
sion variable. Finally, we investigated
how changes in effective connectivity
between these distributed brain regions
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Subjects. Fourteen healthy right-handed sub-
jects [8 males, mean age (£SD): 25.14 * 3.37
years, mean right-handedness score as esti-
mated by the Edinburgh scale (*=SD): 0.86 =
0.1, mean level of higher education (£SD):
3.6 £ 2.2 years] participated in the study (Old-
field, 1971). None of the participants showed
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any past or current neurological or psychiatric
conditions, as assessed by a medical interview and
all had normal or corrected-to-normal visual
acuity. None of them was on medication at the
time of the study. The experiment was approved
by the local ethics committee. Subjects gave their
written informed consent and underwent stan-
dard medical exams before participation.

Perceptual decision-making paradigm. Par-
ticipants performed a GO/NO-GO task, in
which they had to press a response button for a
specific target shape (presented at the begin-
ning of each sequence) among three possible
shapes (Fig. 1b). Each participant performed
the perceptual decision task on 12 randomly
ordered unique sequences. All sequences con-
sisted of the successive presentation of blue
shapes (circle, square, or triangle) displayed at
the center of a screen. At the beginning of each
new sequence, the participant was shown one
of the three shapes on a yellow background.
This shape was the target for the current se-
quence. After 5 s of target display, the back-
ground turned black and the perceptual decision
task began. Participants were instructed to press a
response button held in their right hand each
time they identified the current target, as quickly
and as accurately as possible. Each sequence was
composed of 400 successive stimuli presented for
300 ms every 400 ms (Fig. 1b). A fixation cross
was presented for 10 s between two successive
sequences. Unbeknownst to participants, there
were two types of sequences (Fig. 1b): in first-
order sequences, the next shape was conditioned
on the last shape, whereas in second-order se-
quences, the next shape was conditioned on the
last two shapes. Figure 1c shows a set of transition
rules for a first-order sequence. Using the frame-
work of Shannon’s information theory, we com-
puted for each decision the surprise (Eq. 1),
which measures how unlikely an event is, and the predictive information on
the forthcoming stimulus (Eq. 2-3), which measures how much the knowl-
edge of the recent history (last shape or penultimate shape) reduces this
surprise. Statistical transition rules were held constant within a sequence and
varied between sequences. Moreover, both first- and second-order se-
quences were selected to fall into three categories based on their mutual
information (first-order sequences: Eq. 4; second-order sequences: Eq. 5):
zero (low), one-third (medium), and two-thirds (high) of the maximum
theoretical mutual information (with a tolerance margin of 5%, Eq. 6). This
procedure guaranteed a broad range of predictive information values during
the experiment.

To minimize potentially confounding effects classically observed dur-
ing sequential choices, statistical transition rules were constrained to
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Hypothetical mechanisms by which predictability of forthcoming events modulates the decision-making process. a,
Left panelsillustrate the progressive drifts of decision variables toward their respective decision threshold. They also correspond to
the activity predicted by the decision model for neural populations accumulating sensory evidence. A decision is made when a
decision variable equates its threshold. Right panels illustrate how the reciprobit analysis of RT distributions reveals distinct
regulatory mechanisms of the decision process. Threshold modulation hypothesis: Reciprobit lines swivel toward lower RT when
predictability increases (top right panel), reflecting the lowering of the decision threshold (top left panel). Gain control hypothesis:
Reciprobit lines shift toward lower RT when predictability increases (bottom right panel), reflecting the faster rise of the decision
variable toward the decision threshold (bottom left panel). b, Task design. Participants had to identify a target shape out of three
shapes by pressing a response button (red stars, ISI = 1.35 = 0.76 5 SD). Unbeknownst to the subjects, the next shape could be
predicted on the basis of recent history. In first-order sequences, only the last trial had a predictive value on the next shape, whereas
in second-order sequences, both the last and the penultimate trials had a predictive value on the next shape. ¢, Example of a set of
transition rules from a first-order sequence. Arrows represent transitions from one shape to the next one and transition probabil-
ities are indicated nearby each arrow.

ensure a low repetition probability ( p,peition < 0-05) and to minimize
tandem repeats in sequences (Kornblum, 1969). Moreover, the pace of
perceptual decisions was chosen in accordance with the psychophysical
literature, which shows that the behavioral effect of surprise on response
time (RT) is minimized when repetition probability is low and the inter-
val between two perceptual decisions is short (Kornblum, 1969) and was
further adjusted to guarantee a high level of accuracy (>90%). Sequences
were selected to ensure average frequencies in the 0.05-0.45 range for
each stimulus, thus controlling for oddball effect (Ranganath and Rainer,
2003) by ensuring that sequences did not contain rare events. All stimuli
occurred with the same probability over the whole experiment. Finally, for
each sequence, we selected the most sparsely distributed shape in the range
0.25-0.4 as the target. At the end of the scanning session, participants were
systematically asked about “their awareness of regularities” as in Harrison et
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al. (2006). Only one subject reported he had noticed a pattern, once, during
the experiment but could not give a specific example.

Working hypothesis. Bayesian formulations of perceptual decision
making distinguish between the prior information (before observing the
stimulus) and the accumulation of evidence in term of likelihood (during
stimulus observation). In these formulations, the quantity accumulating
evidence starts at different levels, according to the prior information.
Evidence is then accumulated at a constant rate until the criterion is
reached. In the context of our design, before the stimulus arrives, the
predictive information (prior beliefs) will reset the level of activity and
therefore change the distance to the decision threshold. From this per-
spective, the predictive information is a prior and the information con-
veyed by the stimulus represents the evidence entailed by its likelihood.
Thus, our hypothesis was that both behavioral and fMRI data would be
better explained by an adjustment of the distance to the decision thresh-
old in proportion to the predictive information on the forthcoming stim-
ulus than by a modulation of the slope of the decision variable.

Note that in our paradigm, we kept the level of sensory information
constant (by using exactly the same three stimuli across the experiment).
This does not mean that what is being integrated in the current paradigm
is not sensory evidence. Indeed, perceptual decisions occur even when
visual categorization may appear “unambiguous” while monkeys make
saccades toward a target. For example, frontal eye field and lateral pre-
frontal cortex neurons exhibit a ramping activity that decrease after
reaching a threshold value (Kim and Shadlen, 1999), both when manip-
ulating the position (Hanes and Schall, 1996) or the color (Stanford et al.,
2010) of unambiguous targets.

Thus, although information about local stimulus-response predict-
ability is manipulated in the current study, it is not “integrated” over the
decision process (what is being integrated is still sensory evidence). This
approach mixing local stimulus-response predictability and perceptual
decision making distinguishes our study from the neuroimaging litera-
ture investigating which brain regions encode measures of information
theory, such as surprise and uncertainty (Huettel et al., 2005; Strange et
al., 2005) or their influences on EEG components or corticospinal excit-
ability (Bestmann et al., 2008; Mars et al., 2008).

Estimates of surprise and predictive information. In Shannon’s informa-
tion theory, the surprise of an event is defined by the current estimate of
its marginal log-probability (abbreviated as u, in Eq. 1). This measure has
been considered as an instantaneous measure of the level of saliency
(Harrison et al., 2006). For each new shape e, displayed at time step t, the
current estimate of the surprise (1,) is defined in the following way:

ur(et = i) = _1082(Pr0bz(3z = 1)) (1)

The predictive information of the upcoming event is an instantaneous
measure of the loss of uncertainty about its occurrence due to the knowl-
edge of the previous event(s) (also called “surprise reduction”). This last
measure quantifies the amount of information available at a given time to
predict the outcome of the ongoing perceptual decision and is poorly
correlated with the surprise (a high level of predictive information does
not necessarily mean that surprise is low). We computed both the pre-
dictive information conveyed by the last event (abbreviated as p, , in Eq.
2) and by the last two events (abbreviated as p, , in Eq. 3). For each new
shape e, displayed at the time step t, current estimates of the predictive
information ( p, ,and p, ,) are defined in the following way:

rob,(e, = ile,_, =
probi(e, = ile,, J)) 2

pl,r(et = 5Lé1 = ]) = 10g2< probt(et — l)

rob,(e, = ile,.; = j,e,, = k
Pz,r(ez =1, €1 = j) € = k) = 10g2<p t( : | 1 7J ’ )>

prob,(e, = i)
(3)

Supplemental Figure S1 (available at www.jneurosci.org as supplemental
material) illustrates the trial-to-trial fluctuations of the predictive infor-
mation conveyed by the last (Eq. 2) and by the last two (Eq. 3) shapes over
the course of two exemplary sequences.
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The average predictive information over a whole sequence of events is
called the mutual information. By analogy with the predictive informa-
tion, we computed the mutual information conveyed by the last event
(abbreviated as Im, , in Eq. 4) and by the last two events for each sequence
(abbreviated as Im, , in Eq. 5). Mutual information is maximum when a
sequence is entirely determined (abbreviated as Im_,, in Eq. 6). It is
noteworthy that predictive information is an event-bound measure,
whereas mutual information pertains to the average predictability in a
sequence without relating to any specific event.

Iml,z = E(Ply) (4)
Im,, = E(Pz,z) (5)
Immax = logz(k)> (6)

where k is the number of different shapes in a sequence.

Because participants learned the statistical structure of the sequence as
stimuli were presented, we used a simple Bayesian learning scheme (an
ideal Bayesian observer), in which all marginal and conditional proba-
bility estimates were updated after each new event. Our ideal Bayesian
observer was initialized with flat prior distributions and was reset at the
beginning of each new sequence to account for the lack of prior knowl-
edge on the upcoming sequence (Harrison et al., 2006). For each new
shape e, presented at time step ¢, current values of the marginal proba-
bility of the event i (Eq. 7) and of the joint probability of two successive
events 7 and j (Eq. 8) and of three consecutive events i, j, and k (Eq. 9) are
defined in the following way:

prob(e, = i) = ﬂ (7)

Dl +1
proble, = iye,y = ) = T (8)

e i+l
ij
prob(e, = i,e,y = jie,, = k) = TR 9)
) ’ E”f,j,k +1
i, 5,k

where ;;, is the number of triplets i, j, k at time step # and n;; is the
number of duplets i, j at time step ¢.

We computed the surprise (Eq. 1) and the predictive information
(Egs. 2, 3) at each time step using the estimates provided by Equations
7-9.

Multilinear model of response times. Behavioral analyses were per-
formed using the software packages R and Statistica (v7.1). We defined
the error rate as the number of missed targets divided by the total number
of targets over each sequence. Response times were calculated as the time
elapsed between the onset of a target and the subject’s response.

First, we searched for the best multilinear model of the observed RT
using a descending strategy. The error rate, the surprise, the predic-
tive information conveyed by the last shape and by the last two shapes
(abbreviated respectively as p, and p,), as well as all the first-order
interactions between these explanatory variables were included in the
“full” model. Akaike information criterion was minimized after the
surprise and all first-order interactions were removed from the “full”
model (Bprise = —0.015, p = 0.126).

RT = By + By X pL + Bpo X p2 + Berror rate X (1 — error rate) + &.
(10)

In the reduced behavioral model (Eq. 10), RTs are modeled as a
weighted sum of explanatory variables in which the standardized param-
eter estimates of the model, such as Bpl and BPZ, are referred to as “be-
havioral” sensitivity because they represent the slope between response
times and the amount of predictive information conveyed by the last and
the penultimate shape. So, estimated s correspond to the independent
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Figure2. LATERmodel.a, When a stimulus is presented, a decision signal rises linearly from
the starting point (dashed red line) with an average slope s and a trial-to-trial standard devia-
tion sd. When the signal reaches the decision threshold, a motor response is initiated. In the
model, the amount of sensory evidence needed to reach a decision is represented by the differ-
ence between the starting point and the decision threshold, representing the distance to the
threshold D (Reddi and Carpenter, 2000). b, Relationship between RT distributions, reciprobit
plots, and LATER model parameters. The reciprobit plot represents the cumulative 1/RT distri-
bution, linearized by computing z-scores (probit transformation), as a function of RT. This
graphical representation of RT distribution has two important features: (1) the intercept with
thex = o line solely depends on the mean slope of the decision process and is equal to s/sd; (2)
theintercept with they = 0lineiss/D (which depends on both the slope and the distance to the
threshold).

contribution of each explanatory variable to the prediction of RT. This
multilinear model is consistent with the relationship predicted by se-
quential sampling models of decision in which error rate and response
times depend on the amount of predictive information available, while
keeping the level of sensory information constant across trials. Note that,
by construction of our design, there was no predictive information con-
veyed beyond the penultimate event available to predict the forthcoming
event.

LATER model: how RT distributions are used to distinguish between the two
modulation mechanisms of the decision process. In the LATER (linear ap-
proach to threshold with ergodic rate) model (Carpenter and Williams,
1995; Reddi and Carpenter, 2000; Reddi et al., 2003), the onset of a
stimulus (e.g., a shape) is followed by the linear rise of a signal (decision
variable) from a starting point (red dashed line) to a decision threshold D
(Fig. 2a, blue line). A response is initiated when the decision signal reaches
the threshold. On different trials, the slope of the decision signal varies ran-
domly, but is distributed as a Gaussian probability density function with
mean slope s and with standard deviation sd (Hanes and Schall, 1996).
So, according to the LATER model, the distribution of RT reflects the
projection of the decision variable on the decision threshold and depends
on three parameters: the distance to the threshold (difference between
the starting point and the decision threshold), the mean slope, and its
standard deviation (as stated in Eq. 11 and Fig. 2).

Equation 11 simply expresses that, under the LATER model, the main
decision process yield 1/RT following a normal distribution, with mean
s/D and with standard deviation sd?/D?. In addition, fast guesses are
modeled as an additional normal distribution, whose mean is equal to
zero, and its own standard deviation.

s SD?
URT =N 5 5 ) (11)
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Since 1/RT of the main process is normally distributed (Eq. 11), it is
possible to compute z-scores that express the divergence of the observed
1/RT from the median 1/RT. Plotting z-scores of 1/RT’s cumulative dis-
tribution against RT plotted on a reciprocal time axis yields a straight
line, which is called a reciprobit plot (as illustrated in Fig. 2b). This
graphical representation is useful because the resulting line intersects
z-score = 0 at the median latency s/D, which depends on both the mean
slope (s) and the distance to the threshold (D), whereas it intersects RT =
% at a point that does not vary with the distance to the decision threshold
(Fig. 2b). Importantly, the mathematical properties of the reciprobit
transformation provide us with a graphical representation that distin-
guishes between the two modulation mechanisms in the LATER model
(see Fig. 1a): (1) if the modulation mechanism is an increase of the slope
(sensory evidence gain control), then both intersects will vary in the same
proportion and the line will shift (Fig. 1a, lower right panel); and (2) if
the modulation mechanism is a decrease of the decision threshold, then
only the z-score = 0 intersect will vary, which will result in a swivel of the
reciprobit line around the RT = o intersect (Fig. 1a, upper right panel).

To summarize, the reciprobit transformation directly allows us to de-
rive the z-scores of 1/RTs cumulative distribution from the RT distribu-
tion. From these z-scores, it is then possible to estimate the parameters of
the LATER model (distance to the decision threshold, mean slope, and sd
of the slope) that best fit the data and to perform a Bayesian statistical test
to identify the mechanisms of regulation that best explain the changes
between conditions (decision threshold modulation or gain control of
the sensory evidence).

Psychophysics: LATER model and reciprobit plots. To assess the mecha-
nism underlying the effect of predictive information on decision, we
performed a standard reciprobit analysis (Carpenter and Williams, 1995;
Reddi et al., 2003).

First, we normalized each participant RT dataset to the population’s
average and standard deviation. Then, we pooled all the RT datasets
together and collapsed the behavioral data from first- and second-order
sequences using the optimal amount of predictive information. Next, we
discretized each participant RT dataset into equal bins and excluded
from further analysis those that did not contain enough data to allow for
reliable fits of the decision model. This constraint led us to exclude the
5% lowest predictive information values from further analyses. This is
because, in our experiment, the distribution of predictive information
had along tail toward low values. By the end of these preprocessing steps,
we had sorted RT data into 6 bins with continuously increasing levels of
predictive information ([—0.43, —0.05, 0.25, 0.62, 1, 1.32] bits).

Then, we performed a reciprobit transformation on the resulting RT
distributions. This transformation is based on the LATER model and
makes testable predictions about how RT distributions should change
according to two different modulation mechanisms: distance to the de-
cision threshold or sensory evidence accumulation rate (Carpenter and
Williams, 1995; Gold and Shadlen, 2007) (Fig. 1a). Plotting the recipro-
bit lines, which are linearized cumulative RT distributions plotted on a
reciprocal time scale, highlights those changes.

In addition to this qualitative assessment of the mechanism regulating
the decision process, we used a Bayesian model selection strategy to
identify the regulation mechanism that most likely explained the changes
observed in RT distributions across levels of predictive information. To
do so, we fitted a LATER model using a standard simplex minimization
routine and a likelihood-based cost function under the hypotheses that
changes in RT distribution either resulted from changes in the sensory
evidence accumulation rate or resulted from changes in the distance to
the threshold. Model comparison was performed by fitting the LATER
model for each experimental condition in such a way that either the slope
or the distance to the decision threshold was fixed across condition,
depending on the hypothesis tested. Finally, we computed the log likeli-
hood ratio between the two hypotheses (L — L, difference between
the log likelihood of the distance to the threshold modulation, L, and
the log likelihood of the gain control mechanism, Lg,;,) and used the
cutoff value of the Bayesian factor (Lt — Lg,;, = 2.3) (Jeffrey, 1998) to
assess the significance level of our result. For example, a log likelihood
ratio equal to 4.6 indicates that a modulation of the distance to the
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threshold is 100 times more likely than a gain control of the sensory
evidence (e*° = 100).

To assess whether our finding that predictive information modulates
the decision threshold depended on some specific aspect of the LATER
model, we also fitted a Ratcliff’s drift-diffusion model (RDM) to our data
using the “D-mat” toolbox (Vandekerckhove and Tuerlinckx, 2008)
(http://ppw.kuleuven.be/okp/software/dmat/). However, because the
RDM has been specifically formulated for two-alternative choices, it was
not possible to use its standard formulation. Because our experiment is a
GO/NO-GO task, subjects only responded to one target, which implies
that there were no RT distributions for false-negative trials (no response
for a GO trial) and for true-negative trials (no response for a NO-GO
trial). Therefore, we adapted the D-mat toolbox to fit a GO/NO-GO
version of the RDM on our data: first, we modified the loss function to
only fita “hit” RT distribution (Vandekerckhove and Tuerlinckx, 2008);
second, we fixed the relative position between the starting point and the
boundaries, which means that the changes in the distance from the start-
ing point to the boundary were a priori attributed to the boundary pa-
rameter. Overall, our version of the RDM (“single boundary” RDM)
retained from the version implemented in the D-mat toolbox the drift-
diffusion mechanism, the upper decision boundary, the explicit account
of nondecision time (and of its variability), and the variability in the
starting point. This version of the RDM was adequate because we only
estimated parameters relating to “hit” RT distributions. Note that if we
had investigated errors RT distributions and error rates, an implicit lower
boundary would also have been necessary (Gomez et al., 2007; Ratcliff
and McKoon, 2008).

With these modifications of the D-mat toolbox, it was possible to
reliably retrieve the distance to the decision threshold and the slope
parameters from synthetic RT datasets. Moreover, we assessed the ability
of the “single-boundary” RDM to correctly identify the modulation
mechanism underlying changes between conditions using only the hit
RT distribution and a Bayesian selection strategy [Bayesian information
criterion (BIC); smaller values mean a better model in terms of goodness
of fit and parsimony]. In the slope condition (a synthetic RT dataset
simulating a change in the slope of the accumulation of evidence), the
model in which the drift rate parameter was set free between conditions
had the best Bayesian information criterion (BIC drift rate = 41,162, BIC
boundary = 55,167). In the threshold condition (a synthetic RT dataset
simulating a change in the distance to the threshold), the model in which
the boundary parameter was set free between conditions had the best
Bayesian information criterion (BIC drift rate = 43,441, BIC bound-
ary = 43,075).

Finally, we performed a Bayesian selection analysis among drift-
diffusion models instantiating three alternative mechanisms (distance to
the decision threshold, nondecision time, average slope of diffusion pro-
cess) on our own RT dataset.

fMRI data acquisition. Subjects were scanned at the CERMEP - Imag-
erie du Vivant using a research dedicated 1.5 T MRI scanner (Siemens
Magnetom Sonata with an eight-channel head coil). We acquired 800
echo-planar T2*-weighted functional volumes (200 volumes/run, 4
runs) per experiment. Each volume comprised 28 slices acquired contin-
uously over 2.65 s (TE = 60 ms; interleaved acquisition; slice thickness 4
mm; 0.4 mm noncontiguous; parallel to the subject’s Sylvian fissure
plane; angle to AC-PC: 20—30°; in-plane resolution: 3.44 X 3.44 mm 2
matrix size: 64 X 64), allowing complete brain coverage. Additionally,
T1-weighted images were acquired at the end of each experiment (MP-
RAGE: TR = 1970 ms; TE = 3.93 ms; T1 = 1100 ms; resolution: 1 X 1 X
1 mm>; matrix size: 256 X 256). Head motions were minimized using
foam padding and headphones with earplugs were used to dampen the
scanner noise.

fMRI data preprocessing. Data preprocessing was performed using the
Statistical Parametric Mapping software (SPM2b, Wellcome Depart-
ment of Imaging Neuroscience, University College London, UK, www.
fil.ion.ucl.ac.uk/spm). The first three volumes of each run were removed
to allow for T1 equilibrium effects (197 volumes/run). Before statistical
analysis, we applied a slice-timing correction using the time center of the
volume as reference. Then, head motion correction was applied using
rigid-body realignment. We used realignment parameters during the
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statistical analysis as covariates to model out potential nonlinear head
motion artifacts. Functional and morphological images were then nor-
malized into standard MNI space using SPM’s default templates. Finally,
functional volumes were resampled and smoothed with an 8 mm FWHM
Gaussian kernel. A 256 s temporal “high-pass filter” regressor set was
included in the design matrix to exclude low-frequency noise and
artifacts.

Finally, we explored the data for potential artifacts using tsdiffana,
mean and variance images (http://imaging.mrc-cbu.cam.ac.uk/imaging/
DataDiagnostics). An artifact is defined as the co-occurrence of a vari-
ance spike and a mean intensity drop uncorrelated with experimental
design. Only the last two volumes of one participant’s session met these
criteria and were modeled as confounds in the design matrix. Transla-
tional movements estimated during the realignment procedure were
small as compared to the voxel size (<1 mm).

General linear model 1: main fMRI data statistical analysis. Whole-
brain statistical parametric analyses were performed using a two-stage
random-effect approach. We estimated independently the model param-
eters from each subject’s dataset and then made population inferences
using the parameter intersubject variance. Regressors of interest were
constructed by convolving functions representing the events with the
canonical hemodynamic response function. Three event-related categor-
ical regressors (“stimulus regressor,” “decision-related regressor,” and
“motor regressor”) and three parametric regressors (surprise, predictive
information conveyed by the last shape, and predictive information con-
veyed by the last two shapes) were used to model the events occurring
during the sequences (Fig. 3).

(1) The first regressor modeled the visual stimulation as 0.3-s-long
boxcar functions time locked to the onset of visual stimuli (referred to as
the “stimulus regressor”).

(2) The ongoing processes during perceptual decision formation (re-
ferred to as the “decision-related regressor”) were modeled as boxcar
functions convolved with the response time duration, time locked to
each target onset. Because this condition pooled the decision-related
activity regardless of the context in which it took place, it modeled the
part of the decision-related activity not modulated by its context. Three
parametric regressors were added to the decision-related regressor to
account for the effect of surprise (Eq. 1) and predictive information (Egs.
2, 3) on the decision process. These parametric regressors were hierar-
chically orthogonalized in the following order: surprise, predictive infor-
mation conveyed by the last shape only, and predictive information
conveyed by the last two shapes. This orthogonalization hierarchy natu-
rally emerged from the mathematical definitions of the parameters
(Biichel et al., 1998) and unambiguously separated the effect of the in-
formation conveyed by the last shape from the information conveyed by
the penultimate shape into two parametric regressors. To build these
regressors, we weighted each event of the decision-related regressor by
the current, and continuously updated, estimates of the parameters, so
that each event was characterized by its own set of parameter values.

(3) Finally, the last categorical regressor modeled the motor response
associated with the button press, and was modeled as a Dirac function
using the timing of the button press as onset. Thus, our model explicitly
separated the motor-related activity from the decision-related activity.

Statistical inferences were performed with a threshold of p < 0.05
(clusterwise) familywise error (FWE) corrected across the whole brain
( p<0.001 voxelwise) (see supplemental Tables S1, S2, available at www.
jneurosci.org as supplemental material).

Correlation between “neural” and “behavioral” sensitivity to predictive
information. We reasoned that blood oxygenation level-dependent
(BOLD) activity in a brain region modulating the distance to the thresh-
old should be predictive of each participant’s RT variations (Figs. 4, 5).
Thus, we performed a correlation analysis between the sensitivity to pre-
dictive information estimated from brain activity and the sensitivity to
predictive information estimated from response times for both the infor-
mation conveyed by the last and the penultimate shape.

To measure the “behavioral” sensitivity to predictive information, we
fitted the multilinear model of RT previously identified to each individ-
ual RT set, thereby estimating its Bs (Eq. 10). Here, the Bs are measures of
the slope of the decrease in response time with increasing predictive
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information conveyed by the last and the
penultimate shape, regardless of the current
accuracy level. This analysis yielded a behavior-
based measure of the individual ability to use
the predictive information conveyed by the last
shape and the penultimate shape to modulate
the distance to the threshold. Then, to measure
the “neural” sensitivity to predictive informa-
tion, we extracted for each participant, and in
every brain region found to be sensitive to pre-
dictive information in the main fMRI analysis
[region of interest (ROI)-based approach us-

Categorical
regressors

Stimulation

Motor response : | : |
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ing MarsBaR toolbox v0.38, p < 0.001 voxel- Decision-related activity B 1
wise; see below, ROI analyses], the 3 estimates - time
of the parametric regressors, which provided RT RT

us with measures of the slopes of the decrease
between event-related BOLD activity with in-
creasing predictive information conveyed by
the last shape and the penultimate shape.

Finally, we performed nonparametric correla-
tion analyses between individual “behavioral”
and “neural” sensitivity to identify the brain re-
gions in which the slope of the relationship be-
tween predictive information and BOLD activity
was predictive of the slope of the relationship be-
tween predictive information and RT (Spear-
man’s correlation) (see supplemental Table S1,
available at www.jneurosci.org as supplemental
material).

General linear model 2: controlling for poten-
tial confounding effects in the anterior cingulate
cortex. To assess the specificity of our fMRI
findings, we performed an additional statistical
parametric analysis, in which we added to the general linear model
(GLM) 1 (see Figs. 3, 6) three parametric regressors to the “decision-
related” regressor, orthogonalized in the following order: the first four
parametric regressors controlled for the effects of error likelihood, pre-
diction error, entropy, and surprise, whereas the following two paramet-
ric regressors modeled the modulation of BOLD signal by the predictive
information conveyed by the last shape and the predictive information
conveyed by the penultimate shape. This procedure ensured that any
potential confounding effect from the error likelihood, prediction error,
entropy, and surprise were removed from the estimation of the effects of
the predictive information parametric regressors.

The error likelihood parametric regressor was computed for each
sequence from participant error rates during target trials. The error
prediction parametric regressor (8,) was computed using a standard Res-
corla—Wagner algorithm (Dayan and Abbott, 2001), whose learning pa-
rameter (a) was adjusted to maximize the correlation between
participants RTs and Prob,(e, = ile,_, = j), the reinforcement learning
estimate of the conditional probability of a shape (e,) at the time step ¢
given the last shape (e,_;) (Eqgs. 12, 13). Finally, B, is a binary function
equal to 1 when the expected event actually occurs (e, = 7) and to 0 if it
does not (e, # i) (Eq. 13). The best fit of the Rescorla—Wagner algorithm
was obtained for a learning rate o = 0.08 (range explored 0.01-0.15).

Parametric
regressors

Figure 3.

Prob,. (¢4, = i|er = j) = Prob,(e, = i|e:—1 =j)+taxy$,
(12)
8, = B,(1 — Prob,(e, = i|et—1 =j). (13)

Then, the entropy parametric regressor was computed for each shape
from Equation 14. The entropy is classically viewed as an information-
theoretic equivalent to the concept of conflict (Berlyne, 1957).

H, = tE_(ut,i) (14)

General linear model 3: correlation between BOLD activity and LATER
model parameters. To assess the correlation between LATER model pa-

Surprise (Eq.1)

Predictive information
(last shape:Eq.2)

Predictive information
(penultimate shape: Eq.3)

1l =

time

L
L

Regressors included in the statistical analysis of fMRI data. The main GLM included three categorical and three
parametric regressors (see Materials and Methods, General linear model 1: main fMRI data statistical analysis). The three categor-
ical regressors modeled the main steps of perceptual decision making: sensory processing, decision-related activity and motor
response. Three parametric regressors were derived from the decision-related regressors and hierarchically orthogonalized. These
parametric regressors modeled the modulation of BOLD activity at the time of decision by the surprise and the predictive informa-
tion conveyed by the last and the penultimate shape.

rameters and BOLD activity, we built and estimated a second variant of
GLM 1, in which we sorted the events previously included in the
“decision-related” regressor (Fig. 3) into four discrete levels of predictive
information ([—0.3, 0.18, 0.72, 1.22] bits), which divided the range of
predictive information into bins of equal size (see above, Psychophysics:
LATER model and reciprobit plots). Each bin included enough data to
reliably perform individual fits of the LATER model.

Then, using these four levels of predictive information, we built four
distinct categorical regressors, in which each event was modeled using a
Dirac function time locked on the onset of the target. These four cate-
gorical regressors replaced the “decision-related” regressor of GLM 1
(Fig. 3). GLM 1 and GLM 3 were otherwise identical.

This procedure allowed us to perform nonparametric correlation
analyses (Spearman’s correlation) between BOLD activities at the time of
decision averaged over the four levels of predictive information for each
participant and the corresponding averaged LATER model’s parameter
estimates (Figs. 5¢, 7¢) (see below, ROI analyses).

ROI analyses. We extracted ROI average of estimated s for the three
parametric regressors included in GLM 1 and for the four categorical
regressors modeling the levels of predictive information in GLM 3. To
do so, ROIs were built from functional clusters from GLM 1 (p <
0.001, voxelwise) intersected with a 6-mm-radius sphere centered
on the cluster’s peak voxel using the MarsBaR toolbox (v0.38,
http://marsbar.sourceforge.net).

Conjunction analysis. We performed a conjunction analysis testing the
conjunction null (Nichols et al., 2005), using SPM2b to identify clusters
that exhibited significant negative parametric effects for predictive infor-
mation conveyed by the last and the penultimate shape at the onset of
decisions. However, because conjunction tests are not as sensitive as
single-contrast testing for the average effect over all contrasts and thus
underestimate the underlying effect (Friston et al., 2005), and because we
had a strong a priori hypothesis regarding the involvement of the DLPFC
in implementing the decision variable, here inferences were performed
with a level of significance of p < 10 ~? uncorrected (Fig. 7).

Structural equation modeling. First, to characterize functional subdivi-
sions between the anterior and posterior DLPFC, we built a morphologi-
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ations between the first- and second-order
sequences using a nested model approach
(supplemental Table S3, available at www.
jneurosci.org as supplemental material) (no
convergence problems or inadmissible
solutions).

The overall model fit was assessed with stan-
dard goodness of fit indices, all indicated a
good quality of fit (normed fit indices = 0.91,
centrality index = 0.9, and relative noncentral-
ity indices = 0.91; index values above 0.9 indi-
cate a good quality of fit) (Mueller, 1996).

Functional connectivity analysis. To identify
brain regions that were functionally coupled
with the ACC, we assessed the correlation be-
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tween BOLD activity in this “seed” region and
BOLD activity in each voxel of the brain. To do
so, we extracted the cluster-averaged time
course from the functional cluster we found in
the ACC (Fig. 5a) (ROI-based approach using
MarsBaR toolbox v0.38, p < 0.001 voxelwise;
see above, ROl analyses) and included this time
course as a regressor not convolved with a he-
modynamic response function in a GLM. This
GLM also included a 256 s low-pass filter and
head motion parameters as regressors of non-
\ interest. We then computed group-level SPM
using the standard SPM’s RFX approach.
Supplemental Figure S6 (available at www.
jneurosci.org as supplemental material) shows
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cal ROI of the DLPFC (WFU PickAtlas atlas v2.4, http://fmri.wfubmc.edu,
dilatation parameter = 2 voxels, bilateral mask including BA9, BA10, and
BA46 from WFU PickAtlas built-in atlas, volume = 5994 voxels) and
computed statistical maps of the parametric effect of the predictive in-
formation conveyed by the last shape and the penultimate shape ( p <
0.001 voxelwise). From this analysis, we isolated four functional sub-
regions whose activity reflected the amount of predictive information
at the moment of the decision ( p < 0.05 clusterwise, SVC): left ante-
rior DLPFC, right anterior DLPFC, left posterior DLPFC, and right
posterior DLPFC.

Then, we extracted ROI-averaged time series during first- and second-
order sequences for each participant from 6-mm-radius spheres centered
at the peak voxel of the four brain regions identified in the DLPFC (Fig. 8,
dashed white circles) and the anterior cingulate cortex (ACC) (Fig. 8,
plain white circle) (N = 5124 volumes for each brain region and condi-
tion, no missing values or deleted data). Structural equation modeling
was performed using the Mx software package (v1.65b). Figure 8 repre-
sents the path diagram as arrows to indicate directional or symmetric
connections between the functional regions included in the model.
We performed a maximum-likelihood-based estimation of the model
path coefficients on the correlation matrix derived from the two re-
sulting time series and statistical inferences on path coefficient vari-

-43-05.25 .62 1 1.32
Predictive information (bits)

Higher predictive information reduces the distance to the decision threshold. a, RT decreased as predictive informa-
tion increased in first-order [left panel: r,, = —0.295 (orange), r,, = —0.273 (red), both p < 10 ~% and second-order
sequences [middle panel:rp1 = —0.235(orange), Iy = —0.292 (red), bothp <10 -9, During second-order sequences (middle
panel), RTs were better correlated with the predictive information conveyed by the last two shapes (red) than with the predictive
information conveyed by the last shape only (orange) but not during first-order sequences (left panel), indicating that all available
predictive information was used in the regulation of the decision process. Finally, there was no effect of surprise (right panel, green)
0.02, p = 0.126). b, Reciprobit plot based on pooled RT from all participants showing a swivel toward lower
RT when predictive information increases, as hypothesized in Figure 1a (upper right panel). This aspect is confirmed by the log
Lgain), in accordance with the hypothesis of the modulation of the distance to the threshold. ¢, Distance to
the decision threshold as a function of the level of predictive information available. Error bars represent 95% confidence intervals
of the distance to the threshold. The color code represents the same levels of predictive information in both panels (from —0.43 to

the main result of this analysis with a threshold
of 5% voxelwise, FWE corrected across the
whole brain.

Results

Psychophysics: predictive information
reduces the distance to the threshold of
the decision

RT decreased linearly as predictive infor-
mation increased (Fig. 4a, left and middle
panels), showing that participants suc-
cessfully used the statistical structure of
sequences to predict the forthcoming
shape. Moreover, participants adjusted to
the actual structure of the sequences (first
or second order) to exploit all the predic-
tive information available. Indeed, RTs
were better correlated with the predictive information conveyed
by the last two shapes (last shape and penultimate shape, ,,,) (Fig.
4a, red line) than with the predictive information conveyed by
the last shape only (r,,) (Fig. 44, orange line) during second-
order sequences, but not during first-order sequences (Fig. 4a)
(Hotelling’s ¢, first-order sequences, o1 = T3 P = 0.98; second-
order sequences, 7, = r,,; p < 10 ~°). We also assessed the con-
tribution of the source (last or penultimate shape) of predictive
information on decision response time by fitting a multilinear
model to all participants’ RTs (see Materials and Methods, Mul-
tilinear model of response times). Predictive information had the
same influence on RT whether it was conveyed by the last shape
(B,; = —0.148 = 102, p < 10 ") or by the penultimate shape
(B, =—0.148 =10 2, p<10 B, =B, t=—3.97+10 %,
p = 0.49), showing that the efficiency of the modulation did not
depend on the source of the information. This decrease in RT
with increasing predictive information did not occur at the cost
of accuracy, as shown by a factorial analysis crossing the type of
sequence (first order or second order) and the predictive infor-
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Figure 5.  Event-related response in the ACC predicts individual ability to use predictive

information to modulate the distance to the threshold. a, Parametric response to the amount of
predictive information conveyed by the last shape (rendered with a threshold of p << 10 3
uncorrected, activations surviving a threshold of 5% clusterwise corrected across the whole
brain are circled in red). The color scale represents the slope of the decrease in activity for an
increasing amount of predictive information conveyed by the last shape. Note that it does not
reflect deactivation. Also note that additional brain regions (not shown here) also survived the
statistical threshold used and are listed in supplemental Table S1 (available at www.jneurosci.
org as supplemental material). b, Scatter plots of correspondence between “neural” and “be-
havioral” sensitivities to predictive information in the ACC (n = 14). For each participant, the
two sensitivity measures link event-related responses in the ACC and modulation of RTs. (See
Materials and Methods, Correlation between “neural” and “behavioral” sensitivity to predictive
information.) Individual differences in “behavioral” sensitivity to predictive information con-
veyed by the last shape (left) and the penultimate shape (right) were predicted by individual
differencesin “neural” sensitivity in the ACC. Higher “behavioral” sensitivity to predictive infor-
mation directly reflects the ability to modulate the distance to the threshold. ¢, Scatter plots of
correspondence between BOLD signal change in the ACC and the distance to the decision
threshold (left panel) or the gain of the sensory evidence (right panel). Each point represents the
BOLD signal change in the ACC plotted against the distance to the decision threshold estimated
using the LATER model averaged over the four levels of predictive information (—0.3, 0.18,
0.72,1.22 bits) for each subject.

mation averaged over each sequence (supplemental Fig. S2, avail-
able at www.jneurosci.org as supplemental material; Egs. 4, 5).
Finally, there was no effect of surprise on RT in our experiment,
as expected from previous literature (Fig. 4a, right panel) (Korn-
blum, 1969).

Next, to identify which of the two predicted mechanisms—
modulation of the distance to the threshold or gain control of the
sensory evidence—mediated the effect of predictive information
on decision making, we fitted a LATER model to the RT distri-
bution of the subjects’ responses and compared the likelihood of
the two modulation mechanisms (Carpenter and Williams, 1995;
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Reddi et al., 2003). The modulation of the distance to the thresh-
old by predictive information was significantly more likely than a
gain control of the sensory evidence [log likelihood ratio, defined
as the difference between the log likelihood of the distance to the
threshold modulation hypothesis (L) and the log likelihood of
the gain control hypothesis (L), Lot — Lain = 148.42, which
is “decisive” according to Bayesian inference theory] (Jeffrey,
1998). Moreover, individual model fits showed that all the par-
ticipants used predictive information to modulate their distance
to the decision threshold, except for two participants for whom
data did not allow to conclusively select a mechanism over the
other (supplemental Fig. S3, available at www.jneurosci.org as sup-
plemental material). Then, we performed a reciprobit analysis of the
population’s RT distribution (linearization of RT cumulative distri-
bution resulting in “reciprobit lines”) (see Materials and Methods,
Psychophysics: LATER model and reciprobit plots, and Fig. 4b). This
analysis provided us with a graphical representation of the mecha-
nism modulating decision RT based on the variations of the recip-
robit line for increasing amounts of predictive information: if the
distance to the threshold decreases, then the line swivels around an
intercept point toward lower RT (as in Fig. 1a, top right panel). By
contrast, if the slope of the decision variable increases, then the line
shifts toward lower RT (asin Fig. 1a, bottom right panel). The swivel
of the reciprobit line with increasing levels of predictive information
observed in Figure 4b further confirmed the reduction of the dis-
tance to the threshold by higher predictive information (supplemen-
tal Fig. S3, available at www.jneurosci.org as supplemental material).
Finally, we observed a strong negative correlation between the dis-
tance to the threshold and predictive information (r = —0.995, p <
10~°) (Fig. 4c).

These results did not depend on specific features of the LATER
model since fitting a drift-diffusion model to our dataset also led
to the conclusion that predictive information modulates the dis-
tance to the threshold (log likelihood ratio, Ly — Lgan =
89.051). Furthermore, there was an excellent agreement between
the distance to the threshold estimated using the LATER and the
drift-diffusion models for all levels of predictive information (r =
0.99,p = 107°).

Thus, our behavioral results demonstrate that the effect of
predictive information on decision RT is mediated by the mod-
ulation of the distance to the decision threshold, not by gain
control, and uses all the predictive information available to min-
imize decision RT.

Brain network responding to predictive information

In parallel with our behavioral results showing faster RTs with
increasing predictive information (Fig. 4a), we investigated the
relationship between decision-related brain activity and predic-
tive information (see Materials and Methods, General linear
model 1: main fMRI data statistical analysis; and Fig. 3). The
results revealed a negative correlation between predictive infor-
mation conveyed by the last shape and the BOLD activity in the
ACC, the inferior frontal gyri bilaterally, the right intraparietal
sulcus region (IPS), and the DLPFC bilaterally ( p < 0.05 cluster-
wise corrected for multiple comparisons across the whole brain)
(see Fig. 5a and supplemental Table S1, available at www.
jneurosci.org as supplemental material).

These patterns of decision-related activity were preserved
when adding prediction errors, error likelihood, entropy (which
is a proxy for conflict), and surprise as potential confounds in a
new analysis, supporting the specificity of the relationship be-
tween BOLD activity in all these brain regions and predictive
information (supplemental Table S2, available at www.jneurosci.
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of the decrease in RT as predictive infor-
mation increased. The ACC was the only
brain region in which individual differ-
ences in event-related response (“neural”
sensitivity) predicted each individual’s
ability to use the information available to
modulate the distance to the threshold
(“behavioral” sensitivity) (Fig. 5b). More-
over, this link between ACC’s function
and modulation of the distance to the de-

NS NS NS NS

Error Likelihood
(Error)

Surprise
)

Prediction error
(TD)

T-values
-8 0 8

(Threshold p=0.01 uncorrected)

Figure 6.  Whole-brain analysis of parametric responses to entropy, surprise, error likelihood and prediction error. a, Statistical
maps are rendered with a very lenient uncorrected threshold of p = 0.01 to illustrate the absence of effect of these potential
confounds in the ACC. Left and right sagittal views are shown in the left and right columns. The cold color scale represents negative
correlations and the hot color scale represents positive correlations. b, ROl-average parametric response in the ACC to surprise (U),
error likelihood (Error), prediction error (TD), and entropy (H). None of the four parametric regressors explained a significant

portion of the BOLD activity in the ACC (NS, not significant).

org as supplemental material; and see Materials and Methods,
General linear model 2: controlling for potential confounding
effects in the anterior cingulate cortex). This additional analysis
excludes alternative interpretations of the ACC’s response in
terms of conflict monitoring, postdecisional prediction errors,
and error monitoring (Fig. 6; supplemental Fig. S4, available at
www.jneurosci.org as supplemental material) (Holroyd and
Coles, 2002; Botvinick et al., 2004; Brown and Braver, 2005).

The anterior cingulate cortex modulates the distance to the
threshold of the decision

Within the brain regions showing a parametric response to pre-
dictive information (supplemental Table S1, available at www.
jneurosci.org as supplemental material), we then assessed
whether individual differences in brain activity during decision
making predicted individual differences in the ability to exploit
predictive information to reduce response time (see Materials
and Methods, Functional connectivity analysis). From our be-
havioral analyses showing that the modulation of the distance to
the threshold results in a linear decrease of RT with increasing
predictive information (Fig. 4), we predicted that in the brain
regions modulating the distance to the threshold, individual dif-
ferences in “neural sensitivity,” defined as the slope of the de-
crease in event-related activity as predictive information
increased, should predict “behavioral sensitivity,” i.e., the slope

U Error TD H cision threshold was further supported by
the positive correlation between ACC’s
BOLD activity and distance to the deci-
sion threshold (r = 0.625, p = 0.017) (Fig.
5¢, left panel), but not between ACC’s
BOLD activity and the slope of the accu-
mulation of sensory evidence (r = 0.081,
p = 0.785) (Fig. 5¢, right panel). Together,
these results demonstrate that the ACC is
involved in adjusting the distance to the
threshold in proportion to the current
amount of predictive information.

The dorsolateral prefrontal cortex
codes the decision variable

In a next step, we took advantage of basic
properties of sequential sampling models
to identify the brain regions computing
the decision variable. First, assuming a
coupling between neuronal firing rates
and BOLD activity, we predicted that the
BOLD response in the brain regions cod-
ing the decision variable should increase
with slower decision RT and decrease
when predictive information increases
(i.e., when the distance to the threshold
decreases). This hypothesis is based on the
observation that the duration of the
ramping neuronal activity coding the decision variable predicts
RT and that its height correlates with the distance to the threshold
(as illustrated in Fig. 1a, top left panel) (Hanes and Schall, 1996;
Huk and Shadlen, 2005). Second, paralleling our behavioral re-
sults on RTs, the influence of predictive information on the
BOLD response should not depend on the information source
(last or penultimate shape) and there should be no influence of
surprise on the BOLD response. Finally, BOLD response in brain
regions coding the decision variable should reflect the slope of
sensory evidence accumulation.

A conjunction analysis between brain regions showing
decision-related activity decreasing with higher predictive infor-
mation conveyed by both the last and the penultimate shapes
isolated the anterior part of the right DLPFC and the right IPS
(p <0.001 uncorrected) (Fig. 7a). As expected, BOLD activity in
these brain regions was identically modulated by the predictive
information conveyed by the last and by the penultimate shape
(Fig. 7b) (paired t test, p; = p,, orange and red bars; right IPS: p =
0.43; right DLPFC: p = 0.34), and there was no influence of
surprise on neural activity in these brain regions (Fig. 7b) (¢ test,
u = 0, green bars; rIPS: p = 0.29; rDLPFC: p = 0.8).

Among these two brain regions, we assessed the correlation
between BOLD response and the slope of sensory evidence accu-
mulation (see Materials and Methods, General linear model 3:
correlation between BOLD activity and LATER model parame-
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Figure 7.  Brain regions coding the decision variable. a, Conjunction map showing the brain

regions activated during perceptual decision making in which BOLD activity is negatively mod-
ulated by the amount of predictive information conveyed by the last and the penultimate
shape. We rendered our map using an uncorrected threshold of p < 0.001 (level of significance
used for inference, red voxels) and a threshold of p << 0.005 to show the full extent of the
activations (yellow voxels). b, Average parametric response to surprise (1) and predictive infor-
mation ( p, and p,) in these brain regions. The parametric response to the predictive informa-
tion conveyed by the last shape ( p;) and the penultimate shape ( p,) was not significantly
different (NS) in any of the regions identified ( p, = p,, orange and red bars; rIPS: p = 0.43;
rDLPFC: p = 0.34). There was no parametric response to surprise (u = 0, green bars; rIPS:p =
0.29; IDLPFC: p = 0.8). ¢, Scatter plots of correspondence between BOLD signal change in the
ACCand accumulation’s slope average, for each of the brain regions shown in Figure 7a (circled
in red; see Materials and Methods, General linear model 3: correlation between BOLD activity
and LATER model parameters). Each point represents the BOLD signal change in the ACCand the
slope of sensory evidence accumulation estimated using the LATER model averaged over the
four levels of predictive information (—0.3,0.18, 0.72, 1.22 bits) for each subject (see supple-
mental Fig. $3, available at www.jneurosci.org as supplemental material).

ters). Indeed, although the strength of sensory evidence was kept
constant throughout the experiment, there were fluctuations of the
slope of sensory evidence accumulation between subjects, as can be
seen in supplemental Figure S3 (available at www.jneurosci.org as
supplemental material). These individual fluctuations of the slope of
sensory evidence accumulation correlated with BOLD activity in the
right DLPFC (r = 0.64, p = 0.016), but not in the right IPS (r = 0.09,
p = 0.75), thereby strongly supporting the involvement of the
DLPFC in coding the decision variable (Fig. 7c).

Effective connectivity between the anterior cingulate cortex
and the dorsolateral prefrontal cortex

Finally, having characterized the complementary computations
performed in the ACC (Figs. 4, 5), which modulates the distance
to the threshold, and the DLPFC region coding the decision vari-
able (Fig. 7), we investigated whether the effective connectivity
from the ACC to this DLPFC region increased when optimal
regulation of the distance to the threshold required more com-
plex computations. We formalized our hypothesis as a structural
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Figure 8.  Diagram of effective connectivity between ACC and DLPFC. DLPFC subregions in
which BOLD signal decreased as the predictive information conveyed by the last shape increased
are rendered in blue, DLPFC subregions in which BOLD signal decreased as the predictive infor-
mation conveyed by the penultimate shape increased are rendered in green and DLPFC subre-
gions in which both effects were present are rendered in red ( p << 0.005 uncorrected, for
display). Red cluster corresponds to the DLPFC subregion coding the decision variable shown in
Figure 7. The plain white circle represents the ACC, which is buried within the medial wall of the
frontal cortex. The structural equation model included oriented path (arrows) connecting the
ACCand the four functional subregions found in the DLPFC. Dashed circles white indicate the
location and the extent of the spheres used for time series extraction. A yellow arrow indicates
a significant increase of the path coefficient between first-order and second-order sequences,
whereas a black arrow indicates a significant decrease of the path coefficient (all p < 10 ~2).
Finally, white arrows indicate path coefficient variations that are not significant. Variations of
effective connectivity from first-order sequences to second-order sequences are indicated as
relative variations next to each path (supplemental Table 53, available at www.jneurosci.org as
supplemental material, indicates absolute values and statistical significance).

equation model (path diagram represented with arrows connect-
ing the ACC to the DLPFC in Fig. 8), based on known anatomical
pathways between the ACC and the DLPFC (Beckmann et al.,
2009) and an ROI analysis of the parametric effect of predictive
information in the DLPFC (Fig. 8). When comparing first-order
to second-order sequences, a situation in which computation of
the optimal threshold adjustment increases in complexity, the
path coefficient from the ACC to the region of the DLPFC that
codes the decision variable (Fig. 8, right anterior DLPFC’s acti-
vation, X, y, z: 45, 45, 12) increased significantly, which was not
the case for path coefficients along the other paths originating
from the ACC (Fig. 8; supplemental Table S3, available at www.
jneurosci.org as supplemental material). Interestingly, this effect
was paralleled by an increase in the information flow from right
anterior to posterior DLPFC region (right posterior DLPFC acti-
vations, x, y, z: 39, 6, 27).

Discussion

The accuracy of a perceptual decision depends on the amount of
sensory evidence accumulated (Gold and Shadlen, 2007). How-
ever, gathering evidence takes time, which results in a tradeoff
between a decision’s speed and the accuracy achieved. Thus, op-
timal decision making should exploit all sources of information
available, taking advantage of both the sensory evidence extracted
from the environment and the knowledge of contingencies built
upon past experiences (Bogacz, 2007b; Gold and Shadlen, 2007).
Here, we showed that humans effectively use the predictability
of forthcoming events to modulate the distance to the thresh-
old of their decisions, substituting predictive information for
sensory information in the decision process to speed up action
selection without loss of accuracy (Fig. 4; supplemental Fig.
S2, available at www.jneurosci.org as supplemental material).
Remarkably, people both estimate and use predictive informa-
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tion optimally, adjusting to environmental dynamics of vary-
ing complexity.

The key novel finding reported in this study is the coding in
the ACC of a signal reflecting the adjustments of the distance
to the threshold in proportion to the current amount of pre-
dictive information. This pivotal role of the ACC in the contex-
tual guidance of the decision process is supported by two lines of
evidence: (1) neural sensitivity to predictive information in the
ACC accurately predicts individual fluctuations in the ability to
use predictive information to modulate the distance to the
threshold of the decision (Fig. 5); and (2) effective connectivity
from the ACC to the DLPFC region accumulating sensory evi-
dence increases when optimal adjustment of the distance to the
threshold requires more complex computations, reflecting the
increased weight of ACC’s regulation signals in the decision pro-
cess (Fig. 8). Overall, our results strongly support the idea that
contextually optimized decisions arise from the integration of
complementary computations performed in a network of spe-
cialized brain regions. In this conceptual framework, the ACC’s
main function is the computation of regulation signals that opti-
mally adjust the distance to the threshold to the context.

The involvement of the DLPFC in the accumulation of sen-
sory evidence is supported by the fact that BOLD activity ob-
served in this brain region (1) increased with slower decision
response times, (2) was negatively modulated by the amount of
predictive information conveyed by the last and the penultimate
shape, (3) did not depend on the source of predictive information
(last or penultimate shape), and (4) is correlated with the slope of
the decision variable (Fig. 7). This finding extends previous re-
ports that the DLPFC accumulates sensory evidence related to the
correct choice (Kim and Shadlen, 1999; Heekeren et al., 2004;
Philiastides and Sajda, 2006; Philiastides and Heekeren, 2009).
Note that we implicitly referred to sensory evidence accumula-
tion as the computational mechanism by which a decision vari-
able is implemented, but we acknowledge that other mechanisms
have been proposed and are also possible (Ditterich, 2006; Cisek
et al,, 2009). Finally, the DLPFC activity we observed cannot be
attributed to higher attention at the time of target appearance
because this would have predicted increased BOLD response with
higher predictive information (the latter being associated with
faster RTs in our task). By contrast, we observed a negative cor-
relation between predictive information and BOLD signal in this
brain region (Fig. 7).

Previous fMRI studies reported a relationship between choice
uncertainty and activity in the medial prefrontal cortex when
subjects learn through trials and errors the probability of making
a correct choice (Volz et al., 2003; Huettel et al., 2005; Volz et al.,
2005; Grinband et al., 2006; Huettel, 2006; Platt and Huettel,
2008). These findings parallel studies using fMRI in humans or
brain lesions in monkeys showing that one of ACC’s critical func-
tions is to build and update an extended action/reward history to
guide future decisions optimally (Hampton et al., 2006; Kennerley et
al., 2006; Behrens et al., 2007). Our results draw an important link
between these two fields of research by showing that the ACC is
involved in the regulation of the decision-making process using
predictive information (a measure of the reduction of uncer-
tainty estimated on the basis of the history of associations be-
tween successive events) and suggests that adjustment signals of
the distance to the threshold in the ACC may be a general com-
putational mechanism for the contextual guidance of decisions.
Interestingly, theoretical insights into representational learning
suggest that a learning signal is needed to support such a function
(Williams and Goldman-Rakic, 1998; Holroyd and Coles, 2002;
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Friston, 2003; Dreher et al., 2006; D’Ardenne et al., 2008). The
midbrain activation we observed concomitant with the ACC ac-
tivation could serve such a functional role since prediction error
signal has previously been found in the midbrain (although this
cluster did not survive correction for multiple comparison, p <
0.001 uncorrected) (see Fig. 5a) (Dreher et al., 2006; Behrens et
al., 2007; D’Ardenne et al., 2008).

Previous accounts of the ACC’s function have stressed factors
other than the contextual regulation of the decision-making pro-
cess, such as the monitoring of errors and conflicts (Carter et al.,
1998; Botvinick et al., 2004; Ridderinkhof et al., 2004), the likeli-
hood of errors (Brown and Braver, 2005), and the role of postde-
cisional prediction-error signals (Holroyd and Coles, 2002).
However, none of these alternative functions could account for
the relationship observed here between ACC activity and predic-
tive information. Indeed, additional fMRI analyses of our data
showed that both the likelihood of error and the prediction error
failed to explain our BOLD activity in the ACC at the time of
decision formation (Fig. 6). Moreover, once controlled for the
level of predictive information, BOLD activity in the ACC did not
significantly differ between slow and fast responses, which rules
out interpretations of our ACC activity in terms of conflict mon-
itoring or spurious correlation with RT, which would have pre-
dicted that decisions with longer RTs are associated with greater
levels of conflict and with higher level of ACC activity (supple-
mental Fig. S5, available at www.jneurosci.org as supplemental
material). Moreover, in our experiment, the entropy, which has
been proposed as a direct measure of conflict (Berlyne, 1957) did
not account for a significant part of BOLD activity in the ACC
(supplemental Table S2, available at www.jneurosci.org as sup-
plemental material; Fig. 6).

It should be noted that ACC’s regulatory function of the dis-
tance to the threshold does not necessarily imply that this brain
region directly implements the threshold of the decision. In fact,
a number of theoretical accounts propose that the basal ganglia
implement a gating mechanism that signals, by a phasic increase
of activity in the direct pathway, the moment when the activity of
cortical neurons coding the decision variable crosses the decision
threshold (Lo and Wang, 2006; Bogacz, 2007a, 2009; Frank et al.,
2007). This phasic increase of activity would cancel the tonic
inhibition exerted by the basal ganglia’s output nuclei on motor
command centers (Redgrave et al., 1999). Despite a current lack
of direct evidence, this proposal emphasizes the potentially cen-
tral role of cingulostriatal projections in conveying contextual
regulation signals from the ACC to the main input structure of
the basal ganglia (Kunishio and Haber, 1994; Lo and Wang,
2006). Supporting this hypothesis, we observed a strong correla-
tion between BOLD activity in the ACC and in the striatum,
showing that these two brain regions are functionally coupled
when making simple decisions (supplemental Fig. S6, available at
www.jneurosci.org as supplemental material; Materials and
Methods, Functional connectivity analysis).

Moreover, a recent fMRI study comparing perceptual deci-
sions with cues emphasizing speed or accuracy reported a nega-
tive correlation between individual variations of a measure for
response caution (ratio between the starting point and the deci-
sion threshold) and BOLD activity at the time of the cue in both
the pre-SMA and the striatum (Forstmann et al., 2008). Thus, the
pre-SMA and the striatum may be involved in motor preparation
of fast action when explicitly cued for speed and may implement
the global slowing down observed when cueing for higher accu-
racy. Other recent fMRI studies also explicitly emphasized the
speed of the perceptual decision at the expense of its accuracy
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(Ivanoff et al., 2008; van Veen et al., 2008). By contrast, in our
study, the modulation of the decision process relied upon predic-
tive information (conveyed by recent history) on the forthcom-
ing stimulus, a quantity that participants implicitly tracked and
updated online. Our findings highlight the role of the ACC in
keeping track of past events to build an inner model of contin-
gencies and in adjusting the distance to the decision threshold
and address a more general contextwise modulation of the deci-
sion process, which did not result in a simple global inhibition or
facilitation of action preparation, but in a weighting of each possible
outcome of the decision based on its likeliness. Consistent with our
proposal, a recent fMRI study showed that individual differences in
perceptual decision criterion shifts induced by expected losses cor-
relates with BOLD activity in the ACC. Although the authors did not
analyze their data within the framework of sensory evidence accu-
mulation models, their findings indicate that asymmetric category
costs may affect perceptual decision making in a similar way to
changes in category expectations (Fleming et al., 2010).

In conclusion, combining psychophysics, model-driven fMRI
and the framework of information theory, we characterized the
influence of predictive information on two basic elements under-
lying the formation of human perceptual decision (distance to
the threshold and decision variable). Our results reveal how these
elements are coded in the human brain and shed a new light on
the respective functions played by the DLPFC and the ACC in
perceptual decision making. They also suggest new architectural
principles governing the organization of the human frontal lobe
and how the interactions between the DLPFC and the ACC are
required for optimal decision making.
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Figure S1: Illustration of the predictive information dynamic over the course of a whole
experiment. The estimated mutual information was updated after each new shape and
progressively rose from the beginning of each sequence to a maximum as the sequence
structure was progressively disclosed (Upper panel, Eq. 4-5). Low, Medium and High level of
Im refer to mutual information (Eq. 4-5). During second-order sequences, the mutual
information of the last two shapes (red line, Eq. 3) was significantly higher than the mutual
information of the last shape only (orange line, see Methods, Eq. 2) as seen in the bottom
right panel. During first-order sequences, there was, on average, no extra predictive
information conveyed by the penultimate shape, as reflected by the equality between mutual
information (bottom left panel). Note the large trial-to-trial fluctuations of the predictive
information (used as parametric regressors) during both sequence types.
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Figure S2. Relationship between increasing mutual information in first and second-
order sequences and RT (red circles) and error rates (green bars). RT decreased
monotonically as the mutual information of sequences increased (F=404.1, p<10™). However,
this decrease in RT was not paralleled by increased error rates (Mutual information, F=4.23,
p=0.016; No effect of sequence order, F=2.79, p=0.096; No interactions, F=2.99, p=0.053).
RTs were on average 14.11 ms longer for second-order sequences compared to first-order
sequences (F=79, p<10~, no interaction, F=2.1, p=0.118).



3 1 3 3 9 3 13
ot 0 0 0
LDT-LGain =36.9 LDT-LGain =6.4 LDT-LGain=7.6 LDT-LGain=-0.3
3 . — 3 . . 3 . — -3 . M
300 500 1000 300 500 1000 300 500 1000 300 500 1000
302 3¢ 6 s 3¢ 10 3p 14
ot 0 0 0
(0] 4 LoT-Leain=103 [ LDT-LGain =74 LDT-LGain = 2.6 LDT-LGain = 4
5 3 3 L 3 -3
O 300 500 1000 300 500 1000 300 500 1000 300 500 1000
(%]
N 3 3 3 7 3 1
+
122 @ Predictive
0.72 . .
ol 0 0 018 information
_0:3 (bits)
LDT-LGain = 3.2 < LotlGain=196 <" Lot-LGain = 18.2
3 3 3
300 500 1000 300 500 1000 300 500 1000
3 4 3 8 3
ot 0 0
LDT-LGain=3.9 LDT-LGain =7.6 LDT-LGain=0.8
3 3 3
300 500 1000 300 500 1000 300 500 1000

Response Time (ms)

Figure S3: Reciprobit plots for each participant. Most of the individual reciprobit plots
shows a clear swivel toward lower RT when predictive information increases, as hypothesized
in Figure la (upper right panel). The values of each individual’s log likelihood ratio (Lpr-
Laain) are displayed on each reciprobit plot, favoring the distance to the threshold hypothesis
in all but 2 subjects (subjects 12 and 13). For these two subjects, evidence did not allow to
conclusively choose one mechanism over the other.
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Figure S4: Whole-brain analysis of parametric responses to the amount of predictive
information conveyed by the last shape when accounting for the error likelihood, the
prediction error, the uncertainty and the surprise (threshold of p<0.001, see methods
GLM2). (A) Statistical map is rendered on a glass brain. (B) The crosshair indicates the
coordinate of ACC’s peak activity (x,y,z=9,18,42, Zmax=5.04).
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Figure S5: (A) Paired difference in RT between fast and slow responses as a function of
the level of predictive information. Correct target trials were binned according to the level
of predictive information ([-.43,-.05,.25,.62,1,1.32] bits) and to the response speed (fast and
slow responses, according to each subject’s median RT). No effect of the level of predictive
information was observed on the paired difference in RT between fast and slow responses
(effect of predictive information on the paired difference in RT between slow and fast
responses: F65=1.1242, p=0.3529). (B) Paired difference in ACC’s BOLD signal between
slow and fast responses as a function of the level of predictive information. There was no
difference in ACC BOLD activity between slow and fast responses for any of the 5 levels of
predictive information (T-test, -0.38 bits: p= 0.1643, .06 bits: p=0.0731, .41 bits: p=0.1353,
.92 bits: p=0.2040, 1.3 bits: p=0.8053). No effect of predictive information on the paired
difference in ACC BOLD activity was observed between slow and fast responses (F4¢5= 0.86,
p=0.4937). Error bars in panels A and B represent 95% confidence intervals.
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Figure S6: Group-level map of functional connectivity using the ACC as seed region.
Red pixels indicate brain regions showing a significant correlation with BOLD activity in the
ACC (threshold of 5% FWE whole-brain corrected).



Table S1: Whole brain analysis of parametric response to predictive information.

Significance
MNI Cluster | (whole-brain Correlation Correlation | Correlation
Location (x,y,z ;mm) [ Zmax | extent cluster-wise coefficient coefficient coefficient
(voxel) corrected) (BOLD, srl) (BOLD, sr2) | (BOLD,Gain)
Predictive information conveyed by the last shape : negative parametric effect
Anterior Cingulate Cortex 91842 5.55 233 <10™ .635-0.0036 .697-0.006 .081-NS
L IFG / Anterior Insula -48 18 -3 5.28 184 <10™ .393-NS .112-NS .103-NS
R IFG / Anterior Insula 42 24 -6 5.10 402 <10™ .125-NS 424-NS .006-NS
R Intra Parietal Sulcus 36 -48 45 4.87 120 <10™ .204-NS 428-NS .195-NS
R DLPFC 12 3 60 4.44 36 <10™ .397-NS A477-NS 367-NS
R Superior Temporal
Gyrus 63 -42 21 4.05 95 <10* .226-NS .323-NS .336-NS
L DLPFC -42 39 33 3.67 31 0.018 .182-NS .195-NS -.037-NS

Predictive information conveyed by the last shape : positive parametric effect

Posterior Cingulate Cortex| -12 -54 24 | 3.74 |

86

<10

N/A

N/A

N/A




Table S2: Whole brain analysis of parametric response to predictive information,

including the error likelihood the prediction error and the entropy as nuisance
regressors.

Significance
Location MNI Cluster extent (Whole-brain cluster-
(X,¥,Z ;mm) | Zmax (voxel) wise corrected)

Predictive information conveyed by the last shape : negative parametric effect

R Anterior Cingulate Cortex 91842 5.04 50 <10’

L Anterior Cingulate Cortex -6 12 51 4.51 44 2107

L IFG / Anterior Insula -48 150 4.02 50 107

R Anterior Insula 42 24 -6 4.86 105 <10*

R IFG 60156 | 4.22 42 3.10°

R Intra-Parietal Sulcus 54 -39 51 3.97 40 4107
Predictive information conveyed by the last shape : positive parametric effect

Posterior Cingulate Cortex -12-51 27 | 3.90 47 0.002

Middle Temporal Cortex 57-12-27 | 3.79 33 0.012




Table S3: Path coefficient variations between first and second order sequences from
effective connectivity analysis. See figure 8 for the corresponding diagram of effective

connectivity.
Path Path coefficient Path coefficient Significance
(1 order) (2" order) (Chi-squared, 1 df)
ACC > Right rostral DLPFC 0.3417 0.3962 p=0.003
ACC > Right caudal DLPFC 0.2108 0.2052 p=0.779
ACC > Left rostral DLPFC 0.2819 0.134 p=0.007
ACC > Left caudal DLPFC 0.1253 0.167 p<0.001
Inter-hemispheric rostral DLPFC 0.2375 0.2867 p<0.001
Inter-hemispheric caudal DLPFC 0.07 0.0653 p=0.639
Right rostral DLPFC > Right caudal DLPFC 0.3364 0.4875 p<0.001
Left rostral DLPFC > Left caudal DLPFC 0.2618 0.2015 p<0.001
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