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Executive Summary 

• In Neurosciences and Psychology, learning, reinforcement and rewards are closely 
related concepts but refer to distinct notions. 

• Rewards and punishments are any external objects (or stimuli) that an organism would 
make an effort to obtain or avoid, respectively.  

• Reinforcement Learning (RL) is an area of machine learning concerned with how 
intelligent agents ought to take actions in an environment to maximize cumulative 
rewards in the future. 

• There are multiple brain systems to detect one’s errors, to correct them and for 
checking. 

• The brain constantly makes predictions regarding the outcome of its choices. 

• These brain systems are key for learning by reinforcement and for learning by trial and 
error. 

• Dopaminergic neurons located in the midbrain send a learning signal to many parts of 
the brain, which plays a pivotal role in encoding prediction error signals (i.e. differences 
between expected reward and the reward effectively delivered). 

• Brain systems for learning via rewards and learning from punishments partially overlap 
but are distinct. 

• A variety of reinforcement schedules can be used fruitfully in education and serious 
games, such as variable reinforcement schedules. 

• These principles are useful for education in general and, not just at school. 

 
 

Introduction 
 A key discovery was made in 1953 by Olds and Milner, called the Brain stimulation Reward 
(BSR), defined as a pleasurable phenomenon elicited by direct stimulation of specific brain 
regions. BSR allows animals to learn to execute novel behaviors, such as lever pressing in order 
to receive short electrical stimulation in specific brain areas (Figure 1). This discovery was a 
turning point in the study of the brain's reward system because BSR is able to act as a reward in 
the absence of any peripheral sensory stimulation and any physiological need. The existence of 
such a "pure reward" signal provided a proof that brain regions are specialized in hedonic 
functions as well as in motivational aspects of the reward (Sugrue et al., 2005; Wise, 2002). 
Stimulation activates the reward system circuitry and establishes response habits similar to those 
established by natural rewards, such as food and sex. Thus, electrical brain stimulation, or 
intracranial drug injections, can produce robust reward sensations as well as motivation to come 
back for more due to direct activation of the reward circuit. This discovery illustrates that rewards 
have several basic functions: (1) they induce subjective feelings of pleasure and contribute to 
positive emotion; (2) they can act as positive reinforcers by increasing the frequency and intensity 
of behavior that leads to the acquisition of goal objects, as described in classical and instrumental 
conditioning procedures; (3) they can also maintain learned behaviors by preventing their 
extinction (Schultz, 2000).  
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Figure 1 . Left.  Positive reinforcement produced by self-electrical stimulation of the septal area and other 
regions of rat brain. Right. A learning signal is sent by dopaminergic neurons located in the midbrain to the 
striatum and prefrontal cortex to influence reward-dependent learning (Bayer et al., 2007; Schultz, 2000; 
Schultz & Dickinson, 2000). 
 
 

 

Learning signal as the difference between predicted outcome and outcome 
effectively delivered 
 Rewards induce changes in observable behavior and serve as positive reinforcers by 
increasing the frequency of the behavior that results in reward. In Pavlovian, or classical, 
conditioning, the outcome follows the conditioned stimulus (CS) irrespective of any behavioral 
reaction, and repeated pairing of stimuli with outcomes leads to a representation of the outcome 
that is evoked by the stimulus and elicits the behavioral reaction. By contrast, instrumental 
conditioning requires the subject to execute a behavioral response. Instrumental conditioning 
increases the frequency of those behaviors that are followed by reward by reinforcing stimulus-
response associations.  
 Neuroscientists have identified neurons, called dopaminergic neurons, which fire at the 
specific time of behavior when learning associations between stimuli and rewards during 
Pavlovian and instrumental conditioning paradigms. Dopaminergic cell bodies are located in small 
nuclei called the ventral tegmental area (VTA) and substantia nigra in the midbrain. These 
neurons send projections to the basal ganglia, (in particular the ventral striatum), which are 
engaged in motivation and learning, and, to the prefrontal cortex, engaged in cognitive control 
and executive functions (Figure 1). Dopamine is released at these projection sites when 
dopaminergic neurons fire, and this release modulates a large number of cognitive, motivational 
and learning functions. 
 One important function is to learn to associate a cue (stimulus) with a reward. At the time 
of expected reward delivery, dopaminergic neurons send a learning signal to efferent brain 
structures which reflects a difference between what is expected and what is effectively delivered 
(actual outcome – predicted reward). Prediction errors thus measure deviations from previous 
reward expectations. A prediction error can either be positive (when the reward delivered is better 
than expected) or negative (less or no reward delivered at the expected time) (Schultz et al., 1997; 
Sutton & Barto, 2018). Prediction errors are used to learn the value of states of the world and are 
critical for learning how to make better choices in the future. Electrophysiological studies in 
monkeys indicate that dopaminergic neurons code this prediction error signal in a transient 
fashion at the time of the outcome. 
 Interestingly, in classical conditioning experiments, where an association has to be learnt 
between a conditioned stimulus and a rewarding outcome (unconditioned stimulus), dopaminergic 
neurons fire not only at the time of the outcome delivery but also at the time of the conditioned 
stimulus (Figure 2). The signal coded at the time of the conditioned stimulus reflects the 
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subjective value associated to the reward. Different factors such as reward magnitude, probability, 
timing uncertainty and delay, influence this subjective value signal as well as the prediction error 
signal. In particular, the phasic response of dopaminergic neurons to the conditioned stimuli 
monotonically increases with probability and magnitude, but decreases with increasing reward 
probability at the time of the outcome, as predicted from a prediction error signal (Fiorillo et al., 
2003; Kobayashi & Schultz, 2008). Taken together, these results indicate that dopamine 

responses reflect at least 2 important signals: the subjective value of the cue which predicts the 
future rewarded outcome, and the prediction error signal at the time of outcome (Figure 2). 
Finally, in addition to the roles of dopamine in encoding these two signals, electrophysiological 
studies also indicate that dopaminergic neurons may code a sustained signal between the cue 
and the outcome, that reflects reward uncertainty (maximal when reward probability=0.5) (Fiorillo 
et al., 2003). This signal may be functionally important for risk seeking behavior and/or exploratory 
behavior. This signal may explain why gambling, with its intrinsic reward uncertainty 
characteristics, has reinforcing properties that share common mechanisms with addictive drugs 
(Fiorillo et al., 2003).  

 
Figure 2. Dopaminergic neurons have been proposed to code 3 types of theoretical measures. The signal 
coded at the time of the conditioned stimulus reflects the subjective value associated to the reward. The 
phasic response of dopaminergic neurons to the conditioned stimuli monotonically increases with 
probability. During the delay between the cue and the outcome, dopaminergic neurons also encode a 
sustained signal that reflects reward uncertainty (maximal when reward probability=0.5). Finally, at the time 
of reward outcome, dopaminergic neurons encode a prediction error signal reflecting the difference 
between expected reward and reward effectively delivered. This signal decreases with increasing reward 
probability at the time of the outcome. 
 
 
Human neuroimaging studies on reinforcement learning 

One key property of dopaminergic neurons is that the Prediction Error signal can be 
formally described by an algorithm developed in the field of reinforcement learning (Schultz et al., 
1997). In the Reinforcement learning framework, an agent learns a policy that maximizes the 
"reward function" that accumulates from the immediate rewards (Figure 3). A basic reinforcement 
learning agent interacts with its environment in discrete time steps. At each time t, the agent 
receives the current state s(t), and reward r(t). It then chooses an action a(t) from the set of 
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available actions, which is subsequently sent to the environment. The environment moves to a 
new state s(t+1) and the reward r(t+1) associated with the transition between s(t), a(t), s(t+1) is 
determined. The goal of a reinforcement learning agent is to learn a policy which maximizes the 
expected cumulative reward. 

The beauty of this framework is that cognitive neuroscience has now combined RL models 
with functional neuroimaging in the so-called model-based fMRI approach. In this approach the 
signal observed in fMRI experiments is regressed with the computational signals coming from the 
RL framework, such as the signals encoding the value of each possible actions (called action 
value) and the prediction error signal. Model-based fMRI has been used to investigate the neural 
correlates of the prediction error signal in the whole brain. A number of studies suggest that 
activity in the ventral striatum and ventromedial prefrontal cortex correlates with the reward 
prediction error (Abler et al., 2006; Berns et al., 2001; Bray & O’Doherty, 2007; Dreher et al., 
2006; Fletcher et al., 2001; McClure et al., 2003; O’Doherty et al., 2003). Moreover, the magnitude 
of the prediction error signal in the striatum has been found to correlate with behavioral 
performance (Pessiglione et al., 2006; Schönberg et al., 2007). 

  

Figure 3. In the reinforcement learning (RL) framework, an agent learns a policy which maximizes 
the expected cumulative reward. At each time step, the agent is in a current state  with a reward 
value function and it chooses an action a from a set of available actions, which is subsequently 
sent to the environment.  
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Multiple brain systems for learning by trial and error 

 Learning by trial and error has important implications for education and learning in general, 
outside of the classroom. This learning process engages different brain systems in addition to 
midbrain dopaminergic neurons that encode the difference between what is predicted and what 
is effectively obtained after one’s actions. First, when we make an error in a cognitive task, a 
signal that reflects internal errors, (called Error Related Negativity, ERN), is generated rapidly, (in 
less than 80 ms), by a region called the supplementary motor area (Figure 4). This results in an 
automatic slowing down of our motor action, (post-error slowing), at the behavioral level. 
However, the ERN signal does not indicate what correction needs to be made, and does not in 
itself provide the solution. Another cognitive control mechanism subsequently engages a third 
brain region, (the anterior cingulate cortex), which encodes a signal known as the feedback-
related negativity (FRN), an Event Related Potential (ERP) component reflecting error monitoring 
after the feedback has been obtained from the world. This signal is generated around 250 ms 
after we receive external information, (e.g. a teacher's comment), which has a discrepancy with 
our expectations. The anterior cingulate cortex is connected to other brain areas engaged in 
decision making, and can thus set in motion cognitive flexibility and strategic thinking that takes 
into account the mistake. To date, it seems that the signal encoded in midbrain dopaminergic 
neurons (prediction error signal) is sent to the anterior cingulate cortex, in which populations of 
neurons detect feedback and propose explorative strategies for adaptive behavior. Thus, errors 
are key information for the brain to learn and correct previous predictions to allow adaptive 
learning. 

 
Figure 4. Different brain regions and systems are engaged when learning by trial and error. A learning 
signal (Prediction Error: PE) is sent by midbrain dopaminergic neurons to the frontal cortex and basal 
ganglia. This signal encodes a difference between what is predicted and what is effectively obtained after 
one’s action. After error, a signal detecting internal errors (ERN) is sent by the pre-Supplementary Motor 
Area in less than 80 ms to motor regions to delay subsequent motor responses. Another cognitive control 
mechanism subsequently engages the anterior cingulate cortex (ACC), which encodes the feedback-
related negativity (FRN), about 250 ms after reception of the feedback. 

 
 By “error” we often mean failure or a negative result, which can be subjectively perceived 
as a punishment. However, what is covered in this section is that the brain systematically 
recognizes whether it is wrong, whether for bad or for good: what the brain detects is deviations 
from its expectations. These are prediction errors, and they can be either better or worse than 
predicted. Concretely, how does this fundamental knowledge help to understand what happens 
when a student learns from trial and error? The computation of the difference between the reward 

Midbrain dopaminergic
neurons: 
Prediction Error (PE)

Anterior cingulate cortex

Pre-Supplementary motor area

250 ms

80 ms
(motor slowing)

Learning signal (PE)
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expected by the student (e.g. expecting a correct answer to a question in the classroom) and the 
one actually received, (the answer was wrong), allows her to constantly adjust her representations 
of the world according to this signal. Such trial and error learning involves feedback from the 
teacher or environment with respect to the student's performance. This feedback is not 
necessarily a sanction from the teacher, but may simply consist of the correct answer. If it is done 
regularly, targeted and finely adjusted, the student will rapidly learn from her mistakes. In addition 
to feedback from the teacher, there are also many softwares and electronic games which today 
allow students to monitor their errors and to self-regulate. These educational games can be 
adapted to the rhythm of each pupil in a class. 
 
Decision bias must be overcome for effective learning 
 Why do we persist in making errors, even after receiving appropriate feedback? One 
reason is that we have a natural tendency to overestimate the value of an option previously 
selected. This decision bias is known as “choice-induced preference change” (Brehm, 1956), 
which inhibits learning from one’s mistakes. This phenomenon is based on the fact that one’s 
choices influence one’s values, such that actions or items seem to acquire value simply because 
one has chosen them. If a child chooses the wrong item between two items having equal value, 
they may persist in that choice. This type of persistent error may be difficult to overcome because 
decision biases are deeply rooted in evolution. One interesting proposal to overcome such errors 
is to favor teaching methods based on the observation of mistakes made by others (Monfardini et 
al., 2017). Indeed, when people are free from the preferences created by their own choices, they 
may learn very efficiently from the mistakes of others. A number of fMRI studies in humans, as 
well as direct single-cell recordings in non-human primates, indicate that learning by observation 
of others’ action or outcomes may engage partially different brain systems than learning from 
one’s own mistakes (Joiner et al., 2017). These basic principles can be translated inside the 
classroom into steps taken to promote correction procedures that focus on the correction of 
others’ mistakes. In this way, distinct brain systems can be recruited for learning by observation 
of others. These may be less prone to the decision bias when making choices for oneself. 

 

Learning by carrots or sticks: appetitive versus aversive systems 
 Neuroimaging studies in humans and electrophysiological investigations in animals have 
not only focused on instrumental learning paradigms that require learning by trial and error to 
select the most rewarding option. A number of studies have also investigated the other side of 
the coin: that is learning to avoid options that are more punishing than the others. In this latter 
case, punishment has often been operationalized as a monetary loss or physical harm (pain such 
as heat to the skin inside the scanner). These two types of instrumental learning paradigms have 
helped to identify that in addition to the appetitive system described above, an aversive system 
also functions as an opponent system. While learning from stimuli-reward associations 
preferentially engages the striatum, the aversive system often engages the bilateral insula. In 
addition, some regions, such as the ventromedial prefrontal cortex (vmPFC) and amygdala show 
some degree of overlap, and are engaged regardless of valence type. In particular, the vmPFC 
may integrate information about both appetitive and aversive values across different reinforcer 
modalities (from rewards such as food to more abstract ones such as social reinforcers), so as to 
compute a net value that might guide decision making in a cost-benefit type of calculation.  
 
 fMRI studies also provide examples of overlapping appetitive and aversive processes in 
the human brain. As noted above, the striatum is not only engaged in appetitive learning and 
reward processes but is also engaged in aversive learning (Delgado et al., 2011), perhaps 
reflecting a role in avoidance learning (Delgado et al., 2009; Palminteri et al., 2012). There may 
also be some functional segregation within the striatum, with more anterior regions showing 
relative selectivity for rewards and more posterior regions for losses (Seymour et al., 2007). 
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Consistent with a role of the striatum in reinforcement learning, we have observed both appetitive 
and aversive prediction error signals in this region, consistent with a salience prediction error. In 
this fMRI study, we used RL modelling during a classical conditioning learning paradigm to 
investigate the prediction error related to different types of reinforcement (juice versus image), 
and also compared prediction error for rewards and punishments (Metereau & Dreher, 2013) 
(apple juice, salty water, money and aversive picture). Trials consisted of two phases: an 
anticipatory period followed by the outcome presentation. The results showed that the putamen, 
the insula and the anterior cingulate cortex code the taste prediction error, regardless of valence, 
i.e. for both the appetitive and the aversive liquids (juice and salty water). A different pattern of 
activation was observed in the amygdala, which coded a prediction error only for the 
primary/immediate reinforcers (apple juice, salty water and aversive pictures). These results 
demonstrate the different contributions made by distinct brain regions to compute prediction error 
depending upon the type and valence of the reinforcement (Figure 5).  
 Taken together, neuroimaging evidence suggests that appetitive and aversive processing 
overlap in regions such as the striatum, but also show some functional segregation depending on 
contexts. These contexts are important because engagement of specific brain systems in 
appetitive/aversive conditioning depends on the specific contingencies of the associations to be 
learned. For example, in a simple Pavlovian conditioning paradigms in which one cue predicts 
either a reward or no reward delivery, and another cue predicts a punishment or no punishment 
delivery, the same outcome, i.e. absence of reward may be perceived as a punishment in the first 
case whereas the absence of punishment may be perceived as a reward in the second case. 
 

 
Figure 5. Left. Reinforcers can be positive (rewards) or negative (punishments) and can be classified as 
primary (innate value) vs secondary (learned from experience). Right. Salient Prediction Error (SPE) signal. 
Statistical parametric maps showing that activity in the anterior cingulate cortex, bilateral putamen, and 
bilateral insula correlates with the SPE in the gustatory conditions.. Reinforced and unreinforced trials are 
plotted separately. Bottom right. Illustration of computational signals expected for the salient PE and the 
Reward PE. The SPE signal responds to reward and punishment in the same way, as motivationally salient 
events, generating positive PE for reinforced trials and negative PE for unreinforced trials. The RPE signal 
responds to rewards and punishments in opposite ways, generating a positive PE when an unexpected 
reward is delivered or when an expected punition is missed and generating a negative PE when an 
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unexpected punishment is delivered or an expected reward is missed (Unreinf., Unreinforced; Reinf., 
Reinforced). 

 

Variable vs fixed Reinforcement schedules: how can they help in learning and 
education? 

 Schedules of reinforcement are the rules that control the timing and frequency of reinforcer 
delivery to increase the likelihood a target behavior will happen again, strengthen or continue. In 
a schedule of reinforcement, the reinforcers are only applied when the target behavior has 
occurred, and therefore, the reinforcement is contingent on the desired behavior. There are two 
main categories of schedules: intermittent and non-intermittent. Non-intermittent schedules apply 
reinforcement or no reinforcement at all, after each correct response. Intermittent schedules apply 
reinforcers after some, but not all, correct responses. Among intermittent schedules, different 
schedules can  be distinguished and one is of particular interest: the variable interval schedule. 
Variable interval schedules deliver the reinforcer after a variable time interval has passed since 
the previous reinforcement. This schedule usually generates a steady rate of performance due to 
the uncertainty of the time of the next reward, and is thought to be habit-forming.  
 One application for education is the schedule of exams.Variable interval schedules are 
more effective than fixed interval schedules of reinforcement in teaching and reinforcing behavior 
that needs to be performed at a steady rate. Students whose grades depend on the performance 
of unpredictable exams throughout the semester study more regularly as they cannot know in 
advance when exams will occur. In contrast, fixed interval schedules deliver a reward when a set 
amount of time has elapsed. This is the case when the date of the final exam is fixed. Many 
students whose grades depend entirely on a final exam do not study much at the beginning of the 
semester, but increase their work only when the exam date approaches.  
 Another concrete example for education is the used of multiple schedules of reinforcement 
as a behavioral intervention strategy to allow teachers to signal to students specific contexts under 
which behaviors will be reinforced or not. To signal when a teacher’s attention is available (i.e., 
reinforcement) versus when it is not (i.e., extinction), different types of cues (e.g. color cards) can 
be used (Vargo, 2020). This has proven useful to reduce disruptive behaviors such as 
interruptions by students, which often disrupt the academic environment (Akers et al., 2019; 
Vladescu & Kodak, 2016). These papers offer important examples for teachers to know how to 
design and implement effective behavior management strategies to decrease problem behaviors 
and simultaneously increase academic-related behaviors. 
 A final example comes from the field of serious games which frequently use reinforcement 
schedules (Mayer, 2019; Nagle et al., 2014). Some studies have directly compared distinct 
methods of scheduling rewards in games, such as fixed ratio schedules, in which rewards are 
given after a fixed number of correct responses, and variable ratio schedules, in which they are 
given after an unpredictable number of correct responses. The results of one study indicate that 
giving rewards according to a player-centered variable-ratio schedule has the potential to make 
serious games more effective. The results also showed that enjoyment, performance, duration of 
gameplay and likelihood to play again were significantly higher when variable-ratio schedules 
were used. 
 Together, these behavioral findings demonstrate that variable reinforcement schedules, 
which are more likely to generate Prediction Error signals from dopaminergic neurons, are usually 
more effective in promoting study and learning. 
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Conclusions 

 Fundamental neuroscience knowledge derived from Reinforcement Learning and 
characterization of dopaminergic signals, (e.g. Prediction error) has important practical 
implications for learning and education in general. First, learning by trial and error requires 
learners to confront their mistakes. As one often tends to experience mistakes, learners need to 
be reassured. Students need to understand that mistakes should not be perceived as 
punishments and that they actually learn from trying something and receiving negative feedback 
(i.e. that they can be incorrect). Making a mistake allows us the opportunity to improve our skills 
over time. Another aspect concerns the rich field of reinforcement learning schedules, which has 
direct practical implications, such as the fact that frequent exams/tests will reduce the stress that 
results from the exam itself. Second, over the course of repeated tests, via trial and error and 
informative feedback, students will consider the test itself and their mistakes as a less stressful, 
and more importantly, as a necessity for successful learning. The benefits of discovery by oneself 
through the trial and error process reinforces the relationships between the correct actions and 
outcomes, thereby serving the learning purpose. Further aspects include personality traits such 
as confidence and metacognitive abilities to judge the relationship between perception of oneself 
and one's abilities.  

 

  



10 

 

References 
Abler, B., Walter, H., Erk, S., Kammerer, H., & Spitzer, M. (2006). Prediction error as a linear 

function of reward probability is coded in human nucleus accumbens. Neuroimage, 31, 

790–795. 

Akers, J. S., Retzlaff, B. J., Fisher, W. W., Greer, B. D., Kaminski, A. J., & DeSouza, A. A. (2019). An 

Evaluation of Conditional Manding Using a Four-Component Multiple Schedule. The 

Analysis of Verbal Behavior, 35(1), 94–102. https://doi.org/10.1007/s40616-018-0099-9 

Bayer, H. M., Lau, B., & Glimcher, P. W. (2007). Statistics of midbrain dopamine neuron spike 

trains in the awake primate. J Neurophysiol, 98, 1428–1439. 

Berns, G. S., Mc Clure, S. M., Pagnoni, G., & Montague, P. R. (2001). Predictability modulates 

human brain response to reward. J Neurosci, 21, 2793–2798. 

Bray, S., & O’Doherty, J. (2007). Neural coding of reward-prediction error signals during classical 

conditioning with attractive faces. J Neurophysiol, 97, 3036–3045. 

Brehm, J. W. (1956). Postdecision changes in the desirability of alternatives. Journal of 

Abnormal Psychology, 52(3), 384–389. https://doi.org/10.1037/h0041006 

Delgado, M., Jou, R., LeDoux, J., & Phelps, L. (2009). Avoiding negative outcomes: Tracking the 

mechanisms of avoidance learning in humans during fear conditioning. Frontiers in 

Behavioral Neuroscience, 3, 33. https://doi.org/10.3389/neuro.08.033.2009 

Delgado, M., Jou, R., & Phelps, E. (2011). Neural Systems Underlying Aversive Conditioning in 

Humans with Primary and Secondary Reinforcers. Frontiers in Neuroscience, 5, 71. 

https://doi.org/10.3389/fnins.2011.00071 



11 

 

Dreher, J. C., Kohn, P., & Berman, K. F. (2006). Neural coding of distinct statistical properties of 

reward information in humans. Cereb Cortex, 16, 561–573. 

Fiorillo, C. D., Tobler, P. N., & Schultz, W. (2003). Discrete coding of reward probability and 

uncertainty by dopamine neurons. Science, 299, 1898–1902. 

Fletcher, P. C., Anderson, J. M., Shanks, D. R., Honey, R., Carpenter, T. A., Donovan, T., 

Papadakis, N., & Bullmore, E. T. (2001). Responses of human frontal cortex to surprising 

events are predicted by formal associative learning theory. Nat Neurosci, 4, 1043–1048. 

Joiner, J., Piva, M., Turrin, C., & Chang, S. W. C. (2017). Social learning through prediction error 

in the brain. Npj Science of Learning, 2(1), 8. https://doi.org/10.1038/s41539-017-0009-

2 

Kobayashi, S., & Schultz, W. (2008). Influence of reward delays on responses of dopamine 

neurons. J Neurosci, 28, 7837–7846. 

Mayer, R. E. (2019). Computer Games in Education. Annual Review of Psychology, 70(1), 531–

549. https://doi.org/10.1146/annurev-psych-010418-102744 

McClure, S. M., Berns, G. S., & Montague, P. R. (2003). Temporal prediction errors in a passive 

learning task activate human striatum. Neuron, 38, 339–346. 

Metereau, E., & Dreher, J.-C. (2013). Cerebral correlates of salient prediction error for different 

rewards and punishments. Cerebral Cortex (New York, N.Y.: 1991), 23(2), 477–487. 

https://doi.org/10.1093/cercor/bhs037 

Monfardini, E., Reynaud, A. J., Prado, J., & Meunier, M. (2017). Social modulation of cognition: 

Lessons from rhesus macaques relevant to education. Neuroscience & Biobehavioral 

Reviews, 82, 45–57. https://doi.org/10.1016/j.neubiorev.2016.12.002 



12 

 

Nagle, A., Wolf, P., Riener, R., & Novak, D. (2014). The Use of Player-centered Positive 

Reinforcement to Schedule In-game Rewards Increases Enjoyment and Performance in a 

Serious Game. International Journal of Serious Games, 1(4), Article 4. 

https://doi.org/10.17083/ijsg.v1i4.47 

O’Doherty, J. P., Dayan, P., Friston, K., Critchley, H., & Dolan, R. J. (2003). Temporal difference 

models and reward-related learning in the human brain. Neuron, 38, 329–337. 

Palminteri, S., Justo, D., Jauffret, C., Pavlicek, B., Dauta, A., Delmaire, C., Czernecki, V., Karachi, 

C., Capelle, L., Durr, A., & Pessiglione, M. (2012). Critical Roles for Anterior Insula and 

Dorsal Striatum in Punishment-Based Avoidance Learning. Neuron, 76(5), 998–1009. 

https://doi.org/10.1016/j.neuron.2012.10.017 

Pessiglione, M., Seymour, B., Flandin, G., Dolan, R. J., & Frith, C. D. (2006). Dopamine-

dependent prediction errors underpin reward-seeking behaviour in humans. Nature, 

442(7106), 1042–1045. https://doi.org/10.1038/nature05051 

Schönberg, T., Daw, N. D., Joel, D., & O’Doherty, J. P. (2007). Reinforcement Learning Signals in 

the Human Striatum Distinguish Learners from Nonlearners during Reward-Based 

Decision Making. Journal of Neuroscience, 27(47), 12860–12867. 

https://doi.org/10.1523/JNEUROSCI.2496-07.2007 

Schultz, W. (2000). Multiple reward signals in the brain. Nat Rev Neurosci, 1, 199–207. 

Schultz, W., Dayan, P., & Montague, P. R. (1997). A Neural Substrate of Prediction and Reward. 

Science, 275(5306), 1593–1599. https://doi.org/10.1126/science.275.5306.1593 

Schultz, W., & Dickinson, A. (2000). Neuronal coding of prediction errors. Annu Rev Neurosci, 

23, 473–500. 



13 

 

Seymour, B., Singer, T., & Dolan, R. (2007). The neurobiology of punishment. Nat Rev Neurosci, 

8, 300–311. 

Skvortsova, V., Palminteri, S., & Pessiglione, M. (2014). Learning To Minimize Efforts versus 

Maximizing Rewards: Computational Principles and Neural Correlates. Journal of 

Neuroscience, 34(47), 15621–15630. https://doi.org/10.1523/JNEUROSCI.1350-14.2014 

Sugrue, L. P., Corrado, G. S., & Newsome, W. T. (2005). Choosing the greater of two goods: 

Neural currencies for valuation and decision making. Nat Rev Neurosci, 6, 363–375. 

Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction. 

Vargo, K. K. (2020). A Teacher’s Guide to Using a Multiple Schedule of Reinforcement in 

Educational Settings. Intervention in School and Clinic, 56(1), 36–42. 

https://doi.org/10.1177/1053451220910745 

Vladescu, J. C., & Kodak, T. (2016). The Effect of a Multiple-Schedule Arrangement on Mands of 

a Child with Autism. Behavioral Interventions, 31(1), 3–11. 

https://doi.org/10.1002/bin.1422 

Wise, R. A. (2002). Brain Reward Circuitry: Insights from Unsensed Incentives. Neuron, 36(2), 

229–240. https://doi.org/10.1016/S0896-6273(02)00965-0 

 


	Executive Summary
	Introduction
	Conclusions
	References

