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a  b  s  t  r  a  c  t

One  fundamental  question  concerning  brain  reward  mechanisms  is to determine  how  reward-related
activity  is  influenced  by the  nature  of rewards.  Here,  we review  the neuroimaging  literature  and  explicitly
assess  to  what  extent  the  representations  of  primary  and  secondary  rewards  overlap  in  the  human  brain.
To achieve  this  goal,  we  performed  an  activation  likelihood  estimation  meta-analysis  of  87 studies  (1452
subjects)  comparing  the  brain  responses  to  monetary,  erotic  and  food  reward  outcomes.  Those  three
rewards robustly  engaged  a common  brain  network  including  the  ventromedial  prefrontal  cortex,  ventral
striatum,  amygdala,  anterior  insula  and  mediodorsal  thalamus,  although  with  some  variations  in the
intensity  and location  of peak  activity.  Money-specific  responses  were  further  observed  in  the  most
anterior  portion  of the  orbitofrontal  cortex,  supporting  the  idea  that  abstract  secondary  rewards  are
represented  in  evolutionary  more  recent  brain  regions.  In contrast,  food  and  erotic  (i.e. primary)  rewards
were  more  strongly  represented  in the  anterior  insula,  while  erotic  stimuli  elicited  particularly  robust
responses  in  the  amygdala.  Together,  these  results  indicate  that  the  computation  of  experienced  reward
value does  not  only  recruit  a core  “reward  system”  but  also  reward  type-dependent  brain  structures.
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1. Introduction45

Much of our daily life is driven by the prospect of rewards. A46

classical distinction concerns primary rewards – i.e. food, sex and47

shelter – and secondary rewards – such as money or power. In48

contrast to primary rewards which have an innate value and are49

essential for the maintenance of homeostasis and reproduction,50

secondary rewards are not directly related to survival and only51

gain value through learned association with lower-level rewards. A52

long-standing question is whether primary and secondary rewards53

are processed in common and/or distinct brain structures (Schultz,54

2000). Due to their evolutionary differences, it is tempting to spec-55

ulate that primary and secondary rewards may  be represented56

in phylogenetically distinct brain regions (Knutson and Bossaerts,57

2007), but the evidence remains scarce. In contrast, animal research58

provides empirical evidence for a centralized processing of reward59

in the brain, based on a wealth of studies showing that a core set60

of brain regions – including the ventral tegmental area, nucleus61

accumbens, amygdala and ventromedial prefrontal cortex – are62

sensitive to various types of rewards (Berridge, 2003; Hikosaka63

et al., 2008; Schultz, 2006). However, studies in animals use a very64

limited number of primary rewards (e.g. food and juice), which hin-65

ders the generalizability of the results to more abstract secondary66

rewards. Furthermore, investigation techniques such as electro-67

physiology and focal brain lesions used in animals typically focus68

on specific brain structures and do not offer a “full picture” at the69

brain system level. Neuroimaging appears as an ideal tool to over-70

come these limitations, since it allows to visualize cerebral activity71

throughout the whole brain, and can be easily used in humans in72

order to compare secondary versus primary rewards.73

Building on this opportunity, recent studies in decision neu-74

roscience and neuroeconomics have investigated how the brain75

represents reward value while deciding between different goods.76

Such a choice is assumed to rely on the computation of a “decision77

value”, allowing the comparison of various reward prospects on a78

common scale. Several studies have demonstrated that this compu-79

tation is performed in the ventromedial prefrontal cortex (vmPFC)80

and ventral striatum regardless of the goods at stake, providing81

compelling evidence in favour of a “common reward currency”82

(Chib et al., 2009; Hare et al., 2008; Knutson et al., 2007; FitzGerald83

et al., 2009; Plassmann et al., 2007; see also Peters and Buchel,84

2010 for a review). Yet, these neuroeconomic approaches focus on85

subjective value as inferred from choices, and only a handful of86

neuroimaging studies have made similar direct comparisons con-87

cerning the “experienced value” of rewards, computed at the time88

of outcome (Izuma et al., 2008; Rademacher et al., 2010; Sescousse89

et al., 2010; Smith et al., 2010; Grabenhorst et al., 2010a).  Moreover,90

although the ventral striatum and vmPFC tend to emerge as prime91

candidates for computing experienced values, the results of these92

studies are rather heterogeneous and general conclusions are dif-93

ficult to draw. Alternatively, insights can be gleaned from reviews94

synthesizing the results of single reward studies. Several of them95

have been published in the past years, and concur on including96

the striatum, dopaminergic midbrain, amygdala and orbitofrontal97

cortex in a “common reward circuit”. However, most of these 98

reviews are qualitative and hence suffer from some degree of sub- 99

jectivity: only evidence supporting the involvement of the above 100

regions is presented, and is not critically weighed against all the 101

studies not reporting similar evidence (Haber and Knutson, 2010; 102

O’Doherty, 2004; McClure et al., 2004b).  Addressing this issue, a 103

few quantitative meta-analyses published in recent years have 104

provided a more objective overview of the human neuroimaging 105

literature. However, those meta-analyses were either pooling dif- 106

ferent reward types together (Liu et al., 2011; Cauda et al., 2011; 107

Kuhn and Gallinat, 2012) or focusing on a single reward type (e.g. 108

monetary rewards: Knutson and Greer, 2008; erotic rewards: Kuhn 109

and Gallinat, 2011; Stoleru et al., 2012). 110

To deepen our understanding of the functional architecture 111

of reward processing in the brain, it is crucial to evaluate the 112

consistency and specificity of reward-related activations across 113

different types of rewards. To achieve this goal, we propose to per- 114

form an activation likelihood estimation (ALE) meta-analysis of the 115

neuroimaging literature on reward processing. This approach has 116

several features which make it well-suited to address some of the 117

previous concerns (Laird et al., 2005; Wager et al., 2009). First, 118

ALE provides a quantitative measure of cross-study consistency. 119

In contrast to label-based reviews which start from anatomical 120

labels and draw conclusions based on the clustering of these 121

labels, ALE is a voxel-based approach which uses stereotaxic coor- 122

dinates as input, performs analyses on their spatial distribution, 123

and then only derives anatomical labels based on the resultant 124

clusters. This confers high objectivity to this method, which is 125

immune to risks of incongruent or erroneous labelling among the 126

selected studies. Moreover, ALE produces statistically defensible 127

conclusions, by using numerical estimates (ALE statistics) and sig- 128

nificance thresholds to measure the degree of agreement between 129

studies. Importantly, ALE is able to make comparisons between 130

meta-analyses, similar to contrasts between conditions in individ- 131

ual studies. This feature can be used to investigate specificity, e.g. 132

by subtracting activations related to different reward types. 133

Besides providing a synthetic overview of the literature, the use 134

of a quantitative meta-analytic approach also has practical bene- 135

fits. For instance, many studies restrict their analyses to regions 136

of interest (ROIs), based on the alleged role of these regions in 137

reward processing. However, this kind of assumption concern- 138

ing structure-function relationships should be ideally based on an 139

objective meta-analysis. Moreover, for functionally defined brain 140

regions such as the ventral striatum or medial OFC, current label- 141

based reviews (e.g. Delgado, 2007; Haber and Knutson, 2010; 142

Noonan et al., 2012) do not provide average stereotaxic coordinates 143

from which to derive ROIs. As a consequence, a common practice 144

for anatomically constrained analyses is to build ROIs based on the 145

coordinates extracted from a particular study, which by definition 146

is not representative of the literature. A quantitative meta-analysis 147

would bring a simple solution to these issues. 148

To investigate the consistency and specificity of reward-related 149

responses in the brain, we compared three types of reward out- 150

comes: monetary gains, pleasant foods and visual erotic stimuli. 151
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These rewards were chosen because they are widely used by152

humans and are also the most studied in the neuroimaging liter-153

ature, therefore ensuring a sufficient number of activation foci to154

conduct our meta-analyses. We  first assessed the consistency of155

brain activations elicited by each reward independently, and we156

then investigated the consistency and specificity of these meta-157

analytic results across the three selected rewards by performing158

conjunction and contrast analyses. Specific details regarding study159

selection and analytic procedures are provided below.160

2. Methods161

2.1. Selection of studies162

We  conducted three independent searches in PubMed in order163

to identify fMRI and Positron Emission Tomography (PET) studies164

dealing with the processing of monetary, erotic and food reward165

outcomes. Each search used a combination of key words referring166

to the type of reward (i.e. [(“money” OR “monetary” OR “financial”)167

AND (“reward”)]; [(“food” OR “taste” OR “juice”) AND (“reward”168

OR “pleasant”)]; [(“erotic” OR “sexual”) AND (“stimuli”)]) and to the169

investigation technique (i.e. [“fMRI” OR “PET” OR “neuroimaging”]).170

These searches retrieved 242, 138 and 66 studies, respectively171

(July 2010). The lists of references cited in these studies were also172

scrutinized and relevant studies incorporated to our pool. One173

unpublished study from our laboratory, manipulating food and174

erotic rewards, was further added (Domenech and Dreher, 2008).175

Each article was then carefully read by at least two of the authors176

to make sure that it fulfilled the following selection criteria:177

(1) Only studies reporting whole-brain results were included.178

Indeed, in order to provide an objective view of reward179

processing in the brain, it is important to make sure that all180

cerebral regions have an equal chance of being represented, by181

specifically excluding studies reporting partial (and inherently182

biased) results. In particular, we excluded studies entirely based183

on ROI analyses, studies without a full-brain coverage, and PET184

studies using selective radiotracers other than H215O.185

(2) Because the ALE approach is based on activation foci, only stud-186

ies reporting spatial coordinates in a standardized stereotaxic187

space were included. Talairach coordinates were transformed188

to MNI  space using the Lancaster transform implemented in189

the GingerALE software (see below). In case of doubt about the190

coordinate system used, ambiguity was resolved by writing to191

the authors.192

(3) Since brain activity in reward-related regions is known to be193

sensitive to age (Dreher et al., 2008b),  as well as to various194

types of pharmacological manipulations (Nestler, 2005), we195

only included results obtained in healthy, drug-free, adult sub-196

jects. Moreover, we  excluded studies with a particularly low197

sensitivity, i.e. based on fewer than six subjects.198

(4) Regardless of the protocol used, included studies had to involve199

the delivery of a pleasant stimulus. Moreover, the results200

had to unambiguously reflect reward processing at the time201

of outcome, i.e. they had to be based on contrasts such as202

“reward > control condition”, “reward > omission of reward”,203

“reward > punishment” or “correlation with reward intensity”.204

In particular, studies focusing on reward anticipation or the205

computation of decision values were excluded, as well as con-206

trasts investigating specific questions such as prediction errors,207

sexual preference or sensory-specific satiation. Food reward208

studies systematically involved the delivery of real food/juice in209

the mouth, while all erotic reward studies involved the presen-210

tation of pictures or movies featuring sexually explicit content.211

All these studies further reported behavioural ratings (assessing212

pleasantness, arousal or motivation) showing that the stimuli 213

used were indeed rewarding to the participants. 214

(5) In case of multiple studies based on the same dataset, only one 215

of them was  included. Moreover, only one contrast per study 216

was selected. Almost all included foci survived a statistical 217

threshold corrected for multiple comparisons or an uncorrected 218

p-value threshold of p < 0.001 (see Tables 1–3 for details). 219

Following the implementation of these criteria, there remained 220

33 experiments (394 foci/565 subjects) on monetary rewards, 26 221

experiments (469 foci/443 subjects) on erotic rewards and 28 222

experiments (318 foci/444 subjects) on food rewards (Tables 1–3). 223

2.2. Data analysis 224

Analyses were performed using the revised ALE method as 225

implemented in the latest version of the GingerALE software (ver- 226

sion 2.2, http://brainmap.org/ale), (Turkeltaub et al., 2002; Eickhoff 227

et al., 2009). While the original implementation of the ALE method 228

used a fixed-effects procedure testing for a clustering between 229

foci (Laird et al., 2005), it was  recently modified so as to offer 230

a random-effects approach assessing clustering between experi- 231

ments (Eickhoff et al., 2009, 2012). 232

The ALE method starts by modelling each activation focus 233

reported for a given experiment as the centre of a 3D Gaussian prob- 234

ability distribution. The width of this distribution, reflecting spatial 235

uncertainty, is derived from an empirical model and weighted by 236

the sample size of each experiment (Eickhoff et al., 2009). Then, a 237

modelled activation (MA) map  is computed for each experiment 238

by combining the probability distributions of all foci. The union of 239

these MA  maps across experiments yields voxel-wise ALE scores, 240

describing the convergence of results at each particular location 241

of the brain. This convergence between experiments is then com- 242

pared to a random convergence (i.e. noise) in order to make spatial 243

inferences. Specifically, experimental ALE scores are compared to 244

an analytically derived null-distribution reflecting a random spatial 245

association between experiments (Eickhoff et al., 2012). Impor- 246

tantly, this procedure is akin to a random-effects analysis. The 247

statistical significance of the resulting p-values is determined using 248

a false discovery rate (FDR) corrected threshold, which is applied to 249

the ALE map  along with a minimum cluster size. This procedure was 250

first employed to perform three independent meta-analyses aimed 251

to identify the brain regions consistently activated by monetary, 252

food and erotic rewards. We employed an FDR-corrected threshold 253

of p < 0.01 and a minimum cluster size of 600 mm3. 254

We  then performed contrast meta-analyses between these 255

rewards. First, the ALE maps corresponding to two rewards were 256

subtracted on a voxel-by-voxel basis. Then, the studies associ- 257

ated with these two  rewards were pooled together and randomly 258

divided into two  groups of the same size as the two original sets 259

of studies reflecting the contrast ALE analysis. ALE scores for these 260

two randomly assembled groups were calculated and the differ- 261

ence between these ALE scores was recorded for each voxel. This 262

procedure was then repeated for 5000 permutations of randomly 263

assembled studies, yielding a null-distribution of ALE score differ- 264

ences in each voxel. Random-effects inference was  achieved by 265

comparing this null-distribution voxel-by-voxel with the experi- 266

mental ALE score differences. Based on this approach, we compared 267

monetary versus erotic rewards, monetary versus food rewards, 268

and erotic versus food rewards. We employed an FDR-corrected 269

threshold of p < 0.05, along with a minimum cluster size of 600 mm3
270

(a less stringent p-value was  used because contrast analyses are 271

more conservative). This resulted in six contrast maps, which were 272

further binarized and combined to identify “reward type-specific” 273

regions. “Money-specific” regions were defined as those stem- 274

ming from the conjunction of money > erotic and money > food 275
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http://brainmap.org/ale


Please cite this article in press as: Sescousse, G., et al., Processing of primary and secondary rewards: A quantitative meta-analysis and
review of human functional neuroimaging studies. Neurosci. Biobehav. Rev. (2013), http://dx.doi.org/10.1016/j.neubiorev.2013.02.002

ARTICLE IN PRESSG Model
NBR 1709 1–16

4  G. Sescousse et al. / Neuroscience and Biobehavioral Reviews xxx (2013) xxx–xxx

Table  1
Overview of the monetary reward studies included in our meta-analysis. For each study, the column “n” indicates the number of participants, the column “Foci” indicates the
number of foci included in our meta-analysis, and the column “Task” provides a description of the type of paradigm used. In the column “Contrast”, “Omission” refers to a
null  outcome when a potential gain was expected, “Non-gain” refers to a null outcome when such a null outcome was expected, “Loss” refers to a monetary loss when either
a  gain or a loss was  expected, and “Baseline” refers to any low-level condition such as a fixation cross. When multiple thresholds are reported for one study, “&” means that
these  thresholds were applied simultaneously to every foci, while “|” means that these thresholds were applied to different foci.

Study Modality n Foci Task Contrast Statistical threshold

Abler et al. (2007) fMRI 8 9 Monetary Incentive Delay
task (modified)

Monetary gain > omission p < 0.001 voxel-level uncorr &
k  ≥ 10

Bjork  et al. (2004) fMRI 12 15 Monetary Incentive Delay
task

Monetary gain > omission p < 0.0001 | p < 0.00001
voxel-level uncorr

Bjork et al. (2008) fMRI 23 2 Monetary Incentive Delay
task

Monetary gain > omission p < 0.001 voxel-level uncorr &
p  < 0.05 cluster-level corr

Bjork  et al. (2010) fMRI 24 6 Monetary Incentive Delay
task

Monetary gain > omission p < 0.05 voxel-level FDR corr

Camara et al. (2008) fMRI 17 18 Number guessing task Monetary gain > baseline p < 0.0001 voxel-level uncorr &
p < 0.05 cluster-level corr

Clark  et al. (2009) fMRI 15 18 Slot machine gambling task Monetary gain > omission p < 0.05 voxel-level FWE  corr
Cox  et al. (2005) fMRI 22 28 Card guessing task Monetary gain > loss p < 0.05 voxel-level corr

(permutation testing)
Elliott  et al. (2000) fMRI 9 2 Card guessing task Positive correlation with

cumulative reward level
p < 0.001 voxel-level uncorr |
p  < 0.05 corr

Elliott  et al. (2003) fMRI 12 11 Target detection task Monetary gain > baseline p < 0.001 voxel-level uncorr |
p  < 0.05 corr

Elliott  et al. (2004) fMRI 12 10 Target detection task Monetary gain > non-gain p < 0.001 voxel-level uncorr |
p  < 0.05 corr

Ernst  et al. (2005) fMRI 14 16 Wheel of fortune gambling
task

Monetary gain > omission p < 0.001 voxel-level uncorr

Fujiwara et al. (2009) fMRI 17 18 Card guessing task Positive correlation with
gain > positive correlation
with loss

p < 0.001 | p < 0.0001
voxel-level uncorr

Hardin et al. (2009) fMRI 18 7 Wheel of fortune gambling
task

(Gain > gain
omission) > (loss
omission > loss)

p < 0.00001 voxel-level uncorr

Izuma  et al. (2008) fMRI 19 23 Card guessing task High monetary
gain > non-gain

p < 0.005 voxel-level uncorr &
p  < 0.05 cluster-level corr

Knutson  et al. (2001) fMRI 9 6 Monetary Incentive Delay
task

Monetary gain > omission p < 0.0001 voxel-level uncorr

Knutson et al. (2003) fMRI 12 4 Monetary Incentive Delay
task

Monetary gain > omission p < 0.0001 voxel-level uncorr

Knutson et al. (2008) fMRI 12 15 Monetary Incentive Delay
task

Monetary gain > omission p < 0.0001 voxel-level uncorr &
k ≥ 4

Kunig  et al. (2000) PET 13 9 Pattern recognition task Monetary gain > omission p < 0.001 voxel-level uncorr
Linke  et al. (2010) fMRI 33 16 Reversal learning task Monetary gain > loss p < 0.05 voxel-level FDR corr
Martin  et al. (2009) fMRI 20 2 Classical conditioning task Monetary gain > omission p < 0.003 voxel-level uncorr &

p  < 0.05 cluster-level corr
Martin-Solch et al. (2001) PET 12 41 Pattern recognition task Monetary gain > omission p < 0.001 voxel-level uncorr
Météreau and Dreher (2012) fMRI 20 13 Classical conditioning task Monetary gain > omission p < 0.01 voxel-level FDR corr &

k  ≥ 5
Nieuwenhuis et al. (2005) fMRI 14 10 Card guessing task Monetary gain > loss p < 0.0005 voxel-level uncorr &

k ≥ 60
O’Doherty et al. (2003) fMRI 10 7 Reversal learning task Monetary gain > loss p < 0.001 voxel-level uncorr
Petrovic  et al. (2008b) fMRI 13 11 Wheel of fortune gambling

task
Monetary gain > omission p < 0.001 voxel-level uncorr |

p  < 0.05 cluster-level corr
Ramnani  et al. (2004) fMRI 6 6 Classical conditioning task Monetary gain

(unexpected) > omission
(expected)

p < 0.001 voxel-level uncorr

Reuter  et al. (2005) fMRI 12 4 Card guessing task Monetary gain > loss p < 0.001 voxel-level uncorr
Rogers  et al. (2004) fMRI 14 11 Wheel of fortune type

gambling task
Monetary gain > loss Z > 2.3 voxel-level uncorr &

p < 0.05 cluster-level corr
Samanez-Larkin et al. (2010) fMRI 54 6 Behavioral Investment

Allocation Strategy task
Monetary gain > loss p < 0.0001 voxel-level uncorr &

k ≥ 8
Sescousse et al. (2010) fMRI 18 18 Monetary Incentive Delay

task (modified)
Monetary gain > non-gain p < 0.01 voxel-level FDR corr &

k  ≥ 15
Smith  et al. (2010) fMRI 23 10 Passive viewing task Monetary gain > loss Z > 2.3 voxel-level uncorr &

p < 0.05 cluster-level corr
Van  Leijenhorst et al. (2010) fMRI 15 3 Slot machine gambling task Monetary gain > loss p < 0.001 voxel-level uncorr
Vollm  et al. (2007) fMRI 14 19 Target detection task Monetary gain > non-gain p < 0.001 voxel-level uncorr &

k  ≥ 10

maps, “erotic-specific” regions were defined as those stemming276

from the conjunction of erotic > money and erotic > food maps, and277

“food-specific” regions were defined as those stemming from the278

conjunction of food > erotic and food > money maps. In addition,279

“primary reward-specific” regions were defined as those stemming280

from the conjunction of erotic > money and food > money maps.281

Anatomical localization of functional clusters was performed 282

with the Talairach Daemon application (Lancaster et al., 2000) 283

and a probabilistic atlas (Hammers et al., 2003). For visual- 284

ization purposes, statistical output maps were overlaid on the 285

Colin brain provided with GingerALE, using the Mango software 286

(www.ric.uthscsa.edu/mango). 287
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Table  2
Overview of the erotic reward studies included in our meta-analysis. For each study, the column “n” indicates the number of participants, the column “Foci” indicates the
number  of foci included in our meta-analysis, and the column “Task” provides a description of the type of paradigm used. In the column “Contrast”, “Omission” refers to a
null  outcome when a potential erotic stimulus was expected, and “Baseline” refers to any low-level condition such as a fixation cross. When multiple thresholds are reported
for  one study, “&” means that these thresholds were applied simultaneously to every foci, while “|” means that these thresholds were applied to different foci.

Study Modality n Foci Task Contrast Statistical threshold

Asensio et al. (2010) fMRI 26 15 Passive viewing during a
letter discrimination task

Erotic pictures > neutral
pictures

p < 0.05 voxel-level FWE
corr & k ≥ 20

Barros-Loscertales et al. (2010) fMRI 45 19 Passive viewing during a
letter discrimination task

Erotic pictures > neutral
pictures

p < 0.001 voxel-level uncorr
& k ≥ 2020

Beauregard et al. (2001) fMRI 10 7 Passive viewing task Erotic films > neutral films p < 0.005 corr
Bocher et al. (2001) PET 10 8 Passive viewing task Erotic films > baseline p < 0.001 voxel-level uncorr

& k ≥ 2050
Brunetti et al. (2008) fMRI 18 26 Passive viewing task Erotic films > sport films p < 0.001 voxel-level uncorr
Buhler  et al. (2008) fMRI 10 14 Passive viewing task Erotic pictures > neutral

pictures
p < 0.05 voxel-level FDR
corr & k ≥ 2010

Domenech and Dreher (2008) fMRI 14 25 Choice preference task Erotic pictures > omission p < 0.0001 voxel-level
uncorr & k ≥ 2015

Ferretti  et al. (2005) fMRI 10 17 Passive viewing task Erotic films > sport films p < 0.05 Bonferroni corr
Hamann et al. (2004) fMRI 14 9 Passive viewing task Erotic pictures > neutral

pictures
p < 0.001 voxel-level uncorr
& k ≥ 205

Hu  et al. (2008) fMRI 10 28 Passive viewing task Erotic films > baseline p < 0.001 voxel-level uncorr
& k ≥ 2010

Karama et al. (2002) fMRI 20 18 Passive viewing task Erotic films > neutral films p < 0.001 voxel-level uncorr
| p < 0.05 corr

Kim  et al. (2006) fMRI 10 12 Passive viewing task Erotic films > sport films p < 0.001 voxel-level uncorr
| p < 0.05 corr

Moulier  et al. (2006) fMRI 10 23 Passive viewing task (Nude > dressed
women) > (nude > dressed
children)

p < 0.001 voxel-level uncorr
| p < 0.05 corr

Mouras  et al. (2008) fMRI 8 18 Passive viewing task Erotic films > humorous
films

p < 0.05 corr

Paul  et al. (2008) fMRI 12 13 Passive viewing task Erotic films > neutral films p < 0.001 voxel-level uncorr
& k ≥ 205

Ponseti et al. (2006) fMRI 53 13 Passive viewing task Erotic pictures > neutral
pictures

p < 0.01 voxel-level uncorr
& p < 0.05 cluster-level corr

Prévost et al. (2010) fMRI 16 26 Delay and effort
discounting task

Erotic pictures > baseline p < 0.0001 voxel-level
uncorr & k ≥ 2015

Redouté et al. (2000) PET 9 14 Passive viewing task Erotic films > neutral films p < 0.001 voxel-level uncorr
| p < 0.05 corr

Sabatinelli et al. (2007) fMRI 22 18 Passive viewing task Erotic pictures > Neutral
pictures

p < 0.001 voxel-level uncorr

Safron  et al. (2007) fMRI 22 15 Passive viewing task Erotic pictures > sport
pictures

p < 0.001 voxel-level uncorr
& p < 0.05 cluster-level corr

Schiffer et al. (2008) fMRI 12 39 Passive viewing task Erotic pictures > neutral
pictures

p < 0.05 voxel-level FDR
corr & k ≥ 2010

Seo  et al. (2010) fMRI 21 24 Passive viewing task Erotic pictures > happy
faces pictures

Z > 2.3 voxel-level uncorr &
k ≥ 2010

Sescousse et al. (2010) fMRI 18 30 Erotic Incentive Delay task Erotic pictures > neutral
pictures

p < 0.01 voxel-level FDR
corr & k ≥ 2015

Stoleru et al. (1999) PET 8 4 Passive viewing task Erotic films > neutral films p < 0.001 voxel-level uncorr
| p < 0.05 corr

Sundaram et al. (2010) fMRI 14 19 Passive viewing task Erotic films > baseline p < 0.05 (unclear whether
corrected or not)

Walter  et al. (2008) fMRI 21 15 Passive viewing task Erotic pictures > neutral
pictures

p < 0.001 voxel-level uncorr
& k ≥ 2010

3. Results288

The first goal of this study was to identify a “common reward cir-289

cuit” as defined by the regions of overlap between monetary, food290

and erotic reward outcomes. The results of the meta-analyses con-291

ducted separately for each reward are illustrated in Fig. 1, as well292

as the resulting overlaps. They show that a set of brain regions was293

consistently recruited by all three rewards, although with varying294

levels of significance and spatial extent. These regions included the295

bilateral striatum, mostly in its ventral part, the bilateral anterior296

insula/frontal operculum, the mediodorsal thalamus, the bilateral297

amygdala and the ventromedial prefrontal cortex (vmPFC) extend-298

ing into the pregenual anterior cingulate cortex (pgACC). Fully299

detailed results are reported in Supplementary Tables 1–3.300

Moreover, we performed statistical comparisons between stud-301

ies, in order to identify brain regions responding more robustly to302

one reward relative to the other two (Fig. 2). The results showed303

that the bilateral ventral striatum and the right anterior OFC  were 304

more likely to be activated by monetary compared to food and 305

erotic rewards. In contrast, the dorsal anterior insula and the 306

somatosensory cortex appeared more likely to be activated by food 307

compared to monetary and erotic rewards. Finally, the bilateral 308

amygdala, the ventral anterior insula and the extrastriate body area 309

were more robustly activated by erotic than by monetary and food 310

rewards. The only brain area more reliably activated by primary (i.e. 311

erotic and food) compared to secondary (i.e. monetary) rewards 312

was located in the middle insula. 313

Perhaps surprisingly at first sight, one may  note that among 314

“reward type-specific” regions, defined as those more reliably acti- 315

vated by one reward compared to the other two, some of them 316

were also part of the “common reward circuit”. This result simply 317

illustrates the fact that, despite being recruited by several rewards, 318

some regions were still more reliably activated by one of them in 319

particular. Moreover, in order to ensure that our results were not 320

dx.doi.org/10.1016/j.neubiorev.2013.02.002


Please cite this article in press as: Sescousse, G., et al., Processing of primary and secondary rewards: A quantitative meta-analysis and
review of human functional neuroimaging studies. Neurosci. Biobehav. Rev. (2013), http://dx.doi.org/10.1016/j.neubiorev.2013.02.002

ARTICLE IN PRESSG Model
NBR 1709 1–16

6  G. Sescousse et al. / Neuroscience and Biobehavioral Reviews xxx (2013) xxx–xxx

Table  3
Overview of the food reward studies included in our meta-analysis. For each study, the column “n” indicates the number of participants, the column “Foci” indicates the
number of foci included in our meta-analysis, and the column “Task” provides a description of the type of paradigm used. In the column “Contrast”, “Omission” refers to a
null  outcome when a potential food stimulus was expected, and “Baseline” refers to any low-level condition such as a fixation cross. * The study by Green and Murphy (2012)
was  split into two studies since results are reported separately for two  distinct groups of healthy participants (diet soda drinkers and non-diet soda drinkers). When multiple
thresholds are reported for one study, “&” means that these thresholds were applied simultaneously to every foci, while “|” means that these thresholds were applied to
different foci.

Study Modality n Foci Task Contrast Statistical threshold

Berns et al. (2001) fMRI 25 1 Passive delivery task Preferred > nonpreferred
(between juice and water)

p < 0.01 voxel-level uncorr &
k = 17

de  Araujo et al. (2003) fMRI 11 8 Passive delivery task Sucrose > tasteless drink p < 0.001 | p < 0.0001
voxel-level uncorr | p < 0.05
corr

Del  Parigi et al. (2002) PET 44 20 Passive delivery task Liquid meal
formula > water

p < 0.005 voxel-level uncorr

Domenech and Dreher (2008) fMRI 14 16 Choice preference task Juice > omission p < 0.01 voxel-level FDR corr
Felsted  et al. (2010) fMRI 40 13 Passive delivery task Milkshake > tasteless drink p < 0.05 voxel-level FDR corr
Francis  et al. (1999) fMRI 6 8 Passive delivery task Glucose > baseline p < 0.005 corr
Grabenhorst et al. (2010b) fMRI 14 4 Passive delivery task Positive correlation with

pleasantness of milkshake
flavor

p < 0.001 voxel-level uncorr &
k  ≥ 3

Green  and Murphy (2012) * fMRI 12 37 Passive delivery task Saccharin > water p < 0.001 voxel-level uncorr &
p  < 0.05 cluster-level corr

Green and Murphy (2012) * fMRI 12 20 Passive delivery task Saccharin > water p < 0.001 voxel-level uncorr &
p  < 0.05 cluster-level corr

Haase et al. (2009) fMRI 18 36 Passive delivery task Sucrose > water p < 0.0005 voxel-level uncorr &
p < 0.05 cluster-level corr

Jacobson et al. (2010) fMRI 19 17 Passive delivery task Sucrose > water p < 0.015 voxel-level uncorr &
p  < 0.05 cluster-level corr

Kringelbach et al. (2003) fMRI 9 5 Passive delivery task Liquid food > tasteless
drink

p < 0.05 corr

McCabe  and Rolls (2007) fMRI 12 5 Passive delivery task Umami  food & vegetable
odor > tasteless drink

p < 0.001 voxel-level uncorr |
p  < 0.05 voxel-level FWE  corr

McCabe  et al. (2011) fMRI 15 9 Passive delivery task Chocolate > tasteless drink p < 0.001 voxel-level uncorr &
p  < 0.05 cluster-level corr

McClure et al. (2004a) fMRI 32 1 Classical conditioning
task

Positive correlation with
preference for soda drinks

p < 0.05 voxel-level FDR corr

Météreau and Dreher (2012) fMRI 20 20 Classical conditioning
task

Juice > omission p < 0.01 voxel-level FDR corr &
k ≥ 10

O’Doherty et al. (2001b) fMRI 7 14 Passive delivery task Glucose > tasteless drink p < 0.01 voxel-level uncorr in a
minimum of 6 of 7 subjects

O’Doherty et al. (2002) fMRI 8 2 Classical conditioning
task

Glucose > tasteless drink p < 0.001 voxel-level uncorr

Plassmann et al. (2008) fMRI 20 10 Passive delivery task Wine > tasteless drink p < 0.001 voxel-level uncorr &
k  ≥ 5

Rolls  and McCabe (2007) fMRI 16 6 Passive delivery task Chocolate > tasteless drink p < 0.001 voxel-level uncorr |
p  < 0.05 voxel-level FWE  corr

Small  et al. (2001) PET 9 18 Passive delivery task Positive correlation with
pleasantness ratings for
chocolate

p < 0.001 voxel-level uncorr |
p  < 0.025 voxel-level FWE  corr

Small  et al. (2003) fMRI 9 12 Passive delivery task Sucrose > tasteless drink p < 0.005 voxel-level uncorr |
p  < 0.05 cluster-level corr

Small  et al. (2008) fMRI 12 4 Passive delivery task Juice > tasteless drink p < 0.001 voxel-level uncorr
Uher  et al. (2006) fMRI 8 3 Passive delivery task Milkshake > tasteless drink p < 0.001 cluster-level corr

(permutation testing)
Wang et al. (2009) PET 10 5 Passive delivery task

with/without cognitive
inhibition

Food > baseline Unclear (p < 0.01 cluster-level
corr?)

Zald  et al. (1998) PET 10 3 Passive delivery task Chocolate > water p < 0.0005 voxel-level uncorr
Zald  and Pardo (2000) PET 23 20 Passive delivery task Water > baseline p < 0.0001 voxel-level uncorr
Zald  et al. (2002) PET 9 1 Passive delivery task Sucrose > water p < 0.0005 voxel-level uncorr

biased by potential false positives resulting from the most liberal321

statistical thresholds used in some studies, we ran the above analy-322

ses again only including the most conservative studies (i.e. those in323

which the statistical threshold was explicitly corrected for multiple324

comparisons or was the combination of an uncorrected voxel-level325

threshold and a cluster-extent threshold; see Tables 1–3). All the326

results presented in Fig. 1 survived this more stringent procedure,327

confirming the robustness of our findings.328

4. Discussion329

This meta-analysis provides a synthetic and objective overview330

of reward processing in the human brain, as provided by the331

paradigmatic examples of monetary, food and erotic rewards. As 332

expected, the results confirmed the existence of a core set of brain 333

regions processing reward outcomes in an indiscriminate fashion, 334

in line with the idea of a centralized “reward circuit”. In addition, 335

comparative analyses between rewards revealed that some regions 336

were more specifically recruited by one type of reward compared 337

to the others. 338

Below we discuss those results in the light of current views 339

on the putative functional role of these regions, and offer some 340

tentative explanations to account for the observed differences 341

between rewards. The discussion is organized by cerebral region, 342

so that the reader can easily navigate from one sub-section to 343

another. 344
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Fig. 1. “Common reward circuit” as defined by the overlap of ALE maps produced by monetary, food and erotic reward studies. The ALE maps in the three leftmost columns
show  the brain regions consistently and commonly activated by monetary, erotic and food reward outcomes. The colour scale indicates the magnitude of ALE values, i.e.
the  degree of consistency across studies. The maps on the right illustrate the overlap of activation clusters across rewards (green = monetary rewards, red = erotic rewards,
blue  = food rewards). The ALE maps are overlaid on the Colin brain provided with GingerALE (p < 0.01 FDR whole-brain corrected and cluster size > 600 mm3). (For interpretationQ3
of references to colour in this figure legend, the reader is referred to the web  version of this article.)

4.1. Ventral striatum345

4.1.1. Modality-independent activations346

The striatum, essentially in its ventral part, was  found to be347

consistently activated by monetary, food and erotic outcomes in348

our meta-analysis. Many other rewards were found to elicit sim-349

ilar responses in the striatum, including beautiful faces (Aharon350

et al., 2001; Kampe et al., 2001), desirable objects (Erk et al., 2002),351

pleasant music (Menon and Levitin, 2005; Blood and Zatorre, 2001)352

or reputation and social hierarchy (Izuma et al., 2008; Zink et al.,353

2008). Importantly, recent studies using large-scale reverse infer-354

ences have suggested that the ventral striatum has a relatively355

specific role in reward processing, as compared to other cognitive356

processes (Cauda et al., 2011; Yarkoni et al., 2011).357

Anatomically, the striatum is at the crossroads of several cortico-358

basal ganglia loops involved in limbic, associative and sensorimotor359

functions (Haber and Knutson, 2010). The ventral part, centred on360

the nucleus accumbens, is part of the limbic loop and receives361

many projections from the OFC, ACC, amygdala and midbrain. It is362

hence in an ideal place to integrate cognitive, motor and affective363

information and influence goal-directed behaviour independently364

of reward modality (Haber and Knutson, 2010; Delgado, 2007).365

Nonetheless, the precise computational function of the ventral stri-366

atum is the subject of a lively debate, which indirectly reflects the367

long-standing argument over the role of mesolimbic dopamine in368

reward processing (Berridge, 2007; Berridge and Robinson, 2003). A369

wealth of studies has shown that ventral striatal activity correlates370

with the intensity of received rewards, supporting a role in hedonic371

value representation (Smith et al., 2010; Izuma et al., 2008; Blood372

and Zatorre, 2001). However, reward value is intrinsically corre-373

lated with prediction error, a learning signal which measures the374

difference between received and expected rewards, and is used to375

update future predictions (Niv and Schoenbaum, 2008). Many fMRI376

studies have found brain responses consistent with such a reward377

prediction error in the ventral striatum (O’Doherty et al., 2004; Bray 378

and O’Doherty, 2007; D’Ardenne et al., 2008). Besides, two studies 379

that have explicitly tried to disentangle reward value from predic- 380

tion error have reported a better correlation with the latter (Hare 381

et al., 2008; Rohe et al., 2012). Interestingly, the ventral striatum 382

has also been involved in the computation of aversive prediction 383

errors (Delgado et al., 2008), and a recent study manipulating both 384

rewards and punishments has proposed a more general account 385

in terms of salient prediction error coding, regardless of reinforcer 386

type or valence (Météreau and Dreher, 2012). Taken together, these 387

studies suggest that the ventral striatal responses observed in our 388

meta-analysis might reflect prediction error rather than reward 389

value computation. This ambiguity in the interpretation illustrates 390

the importance of distinguishing learning versus hedonic processes 391

at the brain level, and points to the need for more sophisticated fMRI 392

protocols able to separate them. 393

4.1.2. Modality-dependent activations 394

Our results indicate that monetary rewards activate the ventral 395

striatum more reliably than do erotic and food rewards. However, 396

we believe that this is unlikely to be related to the very nature 397

of monetary rewards. Instead, we think that the present result 398

stems from at least two important differences in how monetary 399

and non-monetary rewards are usually delivered. First, the proto- 400

cols used in monetary studies often involve learning of probabilistic 401

stimulus-reward associations, whereas most erotic and food stud- 402

ies use passive stimulation tasks with fully predictable rewards (see 403

Table 1). Hence, following the hypothesis expressed in the previous 404

paragraph, a possibility is that the differential activation observed 405

in the ventral striatum results from a difference in prediction error 406

computation. Supporting this idea, several studies show that erotic 407

and food rewards elicit higher ventral striatal activity when they are 408

unexpected compared to when they are expected (Sescousse et al., 409

2010; McClure et al., 2003; D’Ardenne et al., 2008; Veldhuizen et al., 410
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Fig. 2. Brain regions more reliably activated by one reward compared to the other
two (i.e. “reward type-specific”). These regions result from contrasts between the
different meta-analyses: “money-specific” regions (green) result from the con-
junction of money > erotic and money > food maps, “erotic-specific” regions (red)
result from the conjunction of erotic > money and erotic > food maps, and “food-
specific” regions (blue) result from the conjunction of food > money and food > erotic
maps. “Primary reward-specific” regions (purple) result from the conjunction of
erotic > money and food > money maps. The ALE maps are overlaid on the Colin brain
provided with GingerALE (p < 0.05 FDR whole-brain corrected and cluster size > 600
mm3;  except for the primary reward-specific activation in the left insula: p < 0.05
FDR whole-brain corrected and cluster size = 350 mm3). (For interpretation of ref-
erences to colour in this figure legend, the reader is referred to the web  version of
this  article.)

2011). Another typical feature of monetary studies is the contin-411

gency between reward outcomes and motor action: in over 85% of412

the studies included in our meta-analysis, the delivery of monetary413

rewards was dependent on the participants’ performance or deci-414

sion, whereas such contingency was observed in very few (i.e. less415

than 10%) of the food and erotic studies. Importantly, this form of416

instrumental conditioning was shown to elicit more robust striatal417

activations than passive reward delivery, supposedly by increasing418

the salience of pleasant outcomes (Zink et al., 2004; Tricomi et al.,419

2004; Elliott et al., 2004). This suggests that the differential activ-420

ity presently observed in the ventral striatum might simply reflect421

a difference in terms of motor demands between monetary and422

non-monetary studies. Supporting this view, a previous study com-423

paring monetary gains with erotic pictures delivered in the exact424

same context (i.e. involving identical motor demands) found virtu-425

ally identical striatal activations in response to these two  rewards426

(Sescousse et al., 2010).427

Our results did not confirm a previous hypothesis suggesting428

that primary rewards such as juice might recruit more lateral429

portions of the striatum (i.e. the putamen) compared to sec-430

ondary rewards such as money (Delgado, 2007). In contrast, we431

found that food- and erotic-related activations tended to cluster432

in the medial portion of the striatum and were less extended than433

money-related activations (see Fig. 1). This could be the sign of a434

territorialisation of reward processing in the striatum, and is in 435

agreement with primate data showing enhanced sexual behaviour 436

following local microinjection of a GABA receptor antagonist specif- 437

ically in the medial part of the ventral striatum (Worbe et al., 2009). 438

4.2. Ventromedial prefrontal/orbitofrontal cortex 439

The orbitofrontal cortex is a vast and heterogeneous region, 440

which can be broadly divided into three main sections based on 441

anatomical and cytoarchitectonic considerations: a posterior OFC 442

region, an anterior OFC region and a vmPFC region (Haber and 443

Knutson, 2010). Our meta-analysis revealed different patterns of 444

activation in these regions depending on reward type. 445

4.2.1. Modality-independent activations in the vmPFC 446

In concert with the ventral striatum, the vmPFC responded 447

to all three tested rewards. Strongly connected to limbic regions 448

including the amygdala, ventral striatum and hippocampus, this 449

region is considered to play a central role in reward valuation. 450

During reward anticipation, the vmPFC has been shown to be 451

sensitive to various generic properties of rewards such as mag- 452

nitude, probability or delay (Haber and Knutson, 2010). It has 453

also found to be crucial in comparing the “goal values” of dif- 454

ferent rewards during decision-making (Rangel and Hare, 2010; 455

Hare et al., 2009; Padoa-Schioppa and Assad, 2008). The present 456

meta-analysis confirms that the vmPFC is equally important for 457

the computation of experienced reward values. In fact, many stud- 458

ies using primary rewards have shown that brain activity in this 459

region correlates with ratings of pleasantness, as confirmed in two 460

recent meta-analyses (Peters and Buchel, 2010; Kuhn and Gallinat, 461

2012). Studies using monetary rewards have further demonstrated 462

that vmPFC activity tracks the value of financial payoffs (O’Doherty 463

et al., 2001a; Knutson et al., 2003). Importantly, the vmPFC seems 464

to be sensitive to the subjective value of rewards rather than to 465

their mere intensity. For instance, vmPFC activity decreases with 466

satiety (O’Doherty et al., 2000; Small et al., 2001) and increases 467

with personal preferences based on brand or price (Plassmann et al., 468

2008; McClure et al., 2004a).  This indicates that the vmPFC is able 469

to integrate value across different stimulus dimensions and differ- 470

ent stimuli. One might further note that the activations observed in 471

our meta-analysis spread over the pregenual ACC, which has strong 472

connections with both the ventral striatum and medial OFC, and 473

has been shown to be involved in reward and emotion processing 474

in two other meta-analyses (Beckmann et al., 2009; Fujiwara et al., 475

2009). 476

4.2.2. Modality-dependent activations in the lateral OFC 477

Our results further revealed money-specific activations in the 478

right anterior OFC. This finding supports the view that secondary 479

(i.e. evolutionary recent) rewards such as money might recruit 480

more anterior OFC regions than primary (i.e. evolutionary ancient) 481

rewards such as food and sex (Kringelbach and Rolls, 2004; 482

Sescousse et al., 2010). Such a dissociation is in line with the cytoar- 483

chitectonic properties of the OFC, showing that the anterior part, 484

characterized by a granular cell layer, is phylogenetically more 485

recent than the posterior part consisting in agranular and dys- 486

granular cortices (Ongür and Price, 2000; Wise, 2008). A similar 487

antero-posterior gradient has also been revealed using a functional 488

parcellation of the OFC based on resting-state connectivity patterns 489

with other brain regions (Kahnt et al., 2012). Furthermore, this 490

hypothesis can be integrated in a broader perspective on frontal 491

lobe organization, suggesting a trend in complexity and abstrac- 492

tion along a posterior-anterior axis with the frontopolar cortex at 493

the apex (Badre and D’Esposito, 2009). For instance the rostro- 494

caudal axis of the lateral prefrontal cortex (dlPFC) was  shown to 495

support a control hierarchy whereby posterior-to-anterior lateral 496
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PFC mediates progressively abstract, higher-order cognitive con-497

trol (Dreher et al., 2008a; Koechlin et al., 2003). Along the same498

lines, patients with lesions in the anterior OFC have been reported499

to be specifically impaired in making decisions entailing abstract,500

i.e. distant, consequences, and not in making decisions leading to501

concrete, i.e. immediate, consequences, further supporting the idea502

of a postero-anterior trend in the representation of abstractness in503

the OFC (Bechara and Damasio, 2005).504

In accordance with the above hypothesis and previous results505

from our group (Sescousse et al., 2010), one would have expected506

primary rewards (i.e. food and erotic stimuli) to specifically recruit507

the posterior portion of the OFC in comparison to monetary508

rewards. Unfortunately we were not able to fully substantiate this509

claim, as the lateral posterior OFC was seemingly recruited by all510

three rewards in our meta-analysis (see Supplementary Materials511

– Fig. S1). Note however that erotic and food rewards did elicit512

activity in the lateral posterior OFC as expected. This is consis-513

tent with a recent report showing that aesthetic appraisal across514

diverse sensory modalities primarily recruits the OFC in its pos-515

terior part (Brown et al., 2011). Note also that the localization of516

reward-related activity in the lateral portion of the OFC challenges517

the hypothesis of a medio-lateral dissociation between rewards and518

punishments in the OFC (Noonan et al., 2012; O’Doherty, 2007).519

4.3. Amygdala520

4.3.1. Modality-independent activations521

The amygdala receives projections from a number of cortical522

regions, but is most strongly connected to the ventral striatum and523

OFC (Haber and Knutson, 2010; Murray, 2007). Our meta-analysis524

showed that, in concert with these two regions, the amygdala525

responded to all rewards regardless of their type.526

These results shed light on the debate opposing valence and527

salience coding in the amygdala. Early studies in humans and ani-528

mals were mostly in favor of the valence hypothesis, suggesting529

that the amygdala is specialized in the processing of negative emo-530

tions such as fear or anger (LeDoux, 2000; Calder et al., 2001),531

or aversive stimuli such as unpleasant odors or monetary losses532

(Zald, 2003; Yacubian et al., 2006). Yet, the results from the present533

meta-analysis provide strong evidence that the amygdala is equally534

sensitive to rewarding stimuli, as confirmed by a wealth of ani-535

mal  studies (Sugase-Miyamoto and Richmond, 2005; Tye and Janak,536

2007; Bermudez et al., 2012). This suggests that the amygdala might537

be better regarded as coding the salience, and not the valence, of538

affectively laden stimuli, consistent with the recent proposal of a539

salient prediction error computation in this region (Météreau and540

Dreher, 2012). Interestingly, several fMRI studies have manipulated541

both these dimensions while comparing positive and negative rein-542

forcers of varying intensity in humans. In line with the salience543

hypothesis, they have shown that amygdala activity is linked to544

the level of arousal induced by these reinforcers, regardless of545

their valence (Small et al., 2003; Anderson and Sobel, 2003). Note546

however that the amygdala is a heterogeneous structure whose547

various nuclei are hardly distinguishable with fMRI, and that pos-548

itive versus negative valence might still be encoded by distinct549

neuronal populations or distinct sub-regions (Prevost et al., 2011;550

Paton et al., 2006).551

Despite the consistent response of the amygdala to reward-552

ing stimuli, it is nevertheless unclear whether these responses553

reflect reward processing per se or assignment of emotional value.554

Based on seemingly overlapping brain mechanisms, emotion and555

reward have often been closely related and described together in556

a model where emotions are a by-product of reinforcement (Rolls,557

2000). However, this view has been challenged by animal studies558

demonstrating that amygdala lesions may  reduce emotional reac-559

tions without disturbing reward processing (Murray, 2007). As a560

consequence, it was  proposed that, rather than a direct role in 561

reward processing, the amygdala was in charge of providing an 562

“affective tag” to stimuli. This is in line with several findings linking 563

amygdala activity with skin conductance responses (SCR), thought 564

to reflect autonomic responses (Bechara et al., 1999; Petrovic et al., 565

2008a). This emotional tagging would further participate in the 566

updating of current reward value and the flexible adaptation of 567

behavior, as illustrated by the decrease in amygdala activity fol- 568

lowing reinforcer devaluation (Baxter and Murray, 2002; Gottfried 569

et al., 2003). Therefore, the activity observed in the amygdala in 570

response to money, food and erotic pictures in the present meta- 571

analysis is more likely to reflect the emotional impact of these 572

stimuli rather than their intrinsic reward value. 573

4.3.2. Modality-dependent activations 574

Our meta-analysis also revealed that the amygdala, and possi- 575

bly its centro-medial nucleus, was more reliably activated by erotic 576

than by monetary and food rewards. This observation supports 577

a role of the amygdala in the emotional appraisal of affectively 578

laden reinforcers such as erotic pictures, known to elicit particularly 579

strong affective and visceral reactions (Lang et al., 1993). In line with 580

this interpretation, two recent studies showed enhanced amygdala 581

activation in response to smiley faces and erotic pictures com- 582

pared to monetary gains (Rademacher et al., 2010; Sescousse et al., 583

2010). The present result may  also stem from the fact that, in con- 584

trast to monetary and food outcomes often delivered in a repetitive 585

fashion in reward experiments, erotic stimuli are more salient and 586

offer more variety, therefore limiting habituation effects commonly 587

observed in the amygdala (Breiter et al., 1996). Moreover, one 588

should note that most neuroimaging studies manipulating erotic 589

rewards were conducted in men, who show significantly higher 590

amygdala responses than women  when presented with visual sex- 591

ual stimuli (Hamann et al., 2004). Overall, our results are mostly 592

compatible with an emotional account of amygdala function. 593

4.4. Anterior insula 594

4.4.1. Modality-independent activations 595

Our meta-analysis showed that the anterior insula bordering the 596

frontal operculum was  consistently activated by monetary, food 597

and erotic rewards. Surprisingly, this structure has been relatively 598

overlooked in the reward literature, and most often associated with 599

aversive events such as monetary losses (Knutson and Bossaerts, 600

2007; Knutson and Greer, 2008; Petrovic et al., 2008b). We  discuss 601

below what might be its function in the processing of appetitive 602

reward outcomes. 603

Whereas the posterior insula receives its main inputs from asso- 604

ciative cortical regions, the anterior insula is mostly connected 605

to limbic regions such as the vmPFC, amygdala and ventral stri- 606

atum, and is essentially innervated by dopaminergic neurons. This 607

situation enables the anterior insula to integrate autonomic and 608

visceral information with emotional and motivational processes, 609

in line with its proposed role in interoception (Naqvi and Bechara, 610

2009). Interoception consists in the neural mapping of bodily states 611

which are meaningful for the maintenance of homeostasis, such as 612

pain, thirst or autonomic arousal (Craig, 2002). These bodily states 613

arise as a consequence of external emotional stimulation, but do 614

not reach consciousness before they are mapped at the insular 615

level. This mapping then leads to an explicit emotional feeling, after 616

being integrated with the events originally eliciting those bodily 617

states (Bechara and Damasio, 2005; Critchley, 2005). Importantly, 618

the classic view of the anterior insula as a purely visceral sensory 619

cortex was  recently extended. Indeed, a number of neuroimag- 620

ing studies have shown that it is involved in the representation 621

of a wide variety of subjective feelings, and not just those arising 622

from bodily states, as well as in many other cognitive processes 623
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such as attention, time perception or perceptual decision-making624

(Craig, 2009). Based on such evidence, the role of the anterior insula625

was reframed and associated more broadly with awareness. This626

generic account of anterior insula function is compatible with the627

bilateral activation observed across monetary, erotic and food out-628

comes, and suggests a role in the subjective affective experience of629

rewards. Moreover, the recruitment of the anterior insula by mon-630

etary rewards confirms that this region does not deal exclusively631

with bodily states relevant for homeostasis, but more generally632

with positive feelings elicited by pleasant outcomes.633

Another function assigned to the anterior insula is the634

processing of risk and uncertainty (Knutson and Bossaerts, 2007;635

Craig, 2009; Singer et al., 2009). A wealth of fMRI studies using mon-636

etary (Huettel et al., 2006) and non-monetary stimuli (Huettel et al.,637

2005; Grinband et al., 2006) have demonstrated increased anterior638

insula activity when faced with risk or risky decisions. The consis-639

tency of this finding for risky monetary rewards was  established in a640

recent meta-analysis, which further suggested that insular engage-641

ment might be even stronger when potential losses are involved642

(Mohr et al., 2010). Along the same lines, it has been proposed that643

the anterior insula computes a risk prediction and a “risk predic-644

tion error”, and thus participates in risk learning (Preuschoff et al.,645

2008). This bears similarity to the concept of an “interoceptive pre-646

diction error”, signaling mismatch between actual and anticipated647

bodily arousal, and suggested to play a role in anxiety (Paulus and648

Stein, 2006). It is further consistent with the idea that the anterior649

insula tracks the salience of outcomes, regardless of their valence650

(Rutledge et al., 2010) Thus, in the context of reward processing,651

the anterior insula might be in charge of tracking both expected652

and experienced risk, a mechanism that would participate more653

broadly in emotional appraisal.654

4.4.2. Modality-dependent activations655

Finally, although our results unambiguously support a role of656

the anterior insula in the processing of both primary and secondary657

rewards, they suggest a stronger involvement in the processing of658

primary rewards. Indeed, we found that the middle insula was  more659

reliably activated by both erotic and food rewards as compared to660

money, while the ventral and dorsal parts of the anterior insula661

were more specifically recruited by erotic and food rewards, respec-662

tively. This is in agreement with a recent meta-analysis showing663

that aesthetic appraisal across various sensory modalities (i.e. pri-664

mary rewards) produces very robust activations in the anterior665

insula (Brown et al., 2011). This could reflect the higher autonomic666

arousal induced by primary rewards: in line with their prominent667

role in homeostasis and survival, erotic and food rewards are known668

to generate acute changes in bodily states and autonomic arousal, as669

evidenced by changes in heart beat, skin conductance, sexual drive670

or satiety levels. Such changes are in turn often correlated with671

activity in the anterior insula, shown to be critically involved in672

autonomic conditioning (Critchley et al., 2002; Kuhn and Gallinat,673

2011). The apparent segregation between erotic-specific and food-674

specific activations along a ventro-dorsal axis is difficult to interpret675

at this stage. Based on the role of the ventral insula in emotional676

appraisal and its frequent coactivation with the amygdala (Deen677

et al., 2010; Mutschler et al., 2009), the present result might reflect678

the particularly strong emotional impact of erotic rewards. The679

activation observed in the anterior insula for food rewards is con-680

sistent with the location of the primary gustatory cortex (Naqvi681

and Bechara, 2009). This is further consistent with the food-specific682

activation observed in the somatosensory cortex and adjacent mid-683

dle insula, known to be involved in the processing of the physical684

properties of food and the mapping of bodily states (Bechara and685

Damasio, 2005). Therefore, it is possible that those food-specific686

activations reflect the sensory properties of food rewards, rather 687

than their specificity as a primary reward. 688

4.5. Mediodorsal thalamus 689

Our meta-analysis revealed that the mediodorsal thalamus, a 690

structure which is rarely discussed in the reward literature, was 691

consistently activated by monetary, erotic and food rewards. This 692

brain region is an important relay between the basal ganglia and 693

the prefrontal cortex: it receives inputs from the ventral striatum 694

via the ventral pallidum, and projects in turn to various regions 695

of the prefrontal cortex, especially the ventromedial part, which 696

projects back to the ventral striatum (Haber and Knutson, 2010; 697

Ongür and Price, 2000; Garcia-Cabezas et al., 2007). Embedded 698

within this striatal–thalamo–cortical loop, the mediodorsal thala- 699

mus  is thought to bridge basic reward signals with higher cognitive 700

processes such as motivation and goal-directed behaviour (Elliott 701

et al., 2000; Galvan et al., 2005). 702

The role of the mediodorsal thalamus in reward prediction is 703

supported by a wealth of studies in both animals and humans. 704

In rats, thalamic neurons were found to fire in anticipation of 705

pleasant food rewards (Komura et al., 2001), while lesions in the 706

mediodorsal thalamus were found to impair instrumental condi- 707

tioning (Corbit et al., 2003). In humans, reward predictive cues 708

were found to elicit robust thalamic activity, often increasing with 709

reward probability (Galvan et al., 2005; Roiser et al., 2010). A meta- 710

analysis further revealed that this activity was  stronger than the 711

one observed at the time of reward outcome (Knutson and Greer, 712

2008). These anticipatory responses have generally been inter- 713

preted as reflecting increased attention towards motivationally 714

salient stimuli. 715

Importantly, the present results demonstrate that the 716

mediodorsal thalamus also plays an important role in processing 717

the experienced value of rewards. Interestingly, activity in the 718

thalamus was found to scale with reward intensity in a number 719

of studies manipulating monetary gains (Martin-Soelch et al., 720

2003; Elliott et al., 2000), erotic stimuli (Redouté et al., 2000) 721

or pleasant music (Blood and Zatorre, 2001). These results can 722

be interpreted within the previous framework, i.e. as reflecting 723

increased arousal, but could alternatively be seen as reflecting 724

reward value coding. However, if the mediodorsal thalamus 725

reflected reward value, we  should expect positive reinforcement 726

to produce much higher thalamic activity than negative reinforce- 727

ment. This does not seem to be the case in our meta-analysis: out 728

of the nine monetary studies using contrasts between gains and 729

losses, only one reported activity in the thalamus (Cox et al., 2005). 730

This is consistent with a meta-analysis showing that anticipation 731

of reward versus punishment does not elicit differential activation 732

in the thalamus (Knutson and Greer, 2008). Hence, although more 733

research is needed to confirm this hypothesis, it is possible that 734

the currently observed mediodorsal thalamus activity reflects 735

the general arousal induced by behaviorally salient rewards. 736

This is in line with a recent study in which monetary rewards, 737

found to be motivationally more salient than social rewards (as 738

objectivised by faster reaction times), also elicited higher thalamic 739

activation (Rademacher et al., 2010). It is also consistent with a 740

study investigating sexual orientation, and showing that despite 741

similar attractiveness judgments, faces of the preferred sex elicited 742

higher activity in the mediodorsal thalamus than less salient faces 743

of the non-preferred sex (Kranz and Ishai, 2006). 744

4.6. The hypothalamus and extrastriate body area 745

Finally, our meta-analysis revealed that the hypothalamus and 746

extrastriate body area, two brain regions not usually associated 747
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with reward processing, were robustly and specifically activated748

by erotic rewards.749

The hypothalamus is part of the limbic system and plays a750

general role in homeostatic control and autonomic responses,751

essentially by means of its neuroendocrine function. In particular,752

it is known to be important for feeding behaviour, and its activity753

was shown to be modulated by food cues as well as by hunger and754

satiety feelings (Grabenhorst et al., 2010b; Hikosaka et al., 2008).755

However, this role seems to be distinct from the coding of food756

hedonics, as illustrated by the absence of hypothalamic response757

to pleasant foods in our meta-analysis. In contrast, the hypothal-758

amus appeared to be particularly sensitive to the presentation of759

visual erotic stimuli, consistent with the rich animal and human760

literature demonstrating the pivotal role of this region in sexual761

behaviour (Karama et al., 2002; Walter et al., 2008). Several neu-762

roimaging studies have found a correlation of hypothalamic activity763

with subjective sexual arousal, as well as with physiological arousal764

responses in men, such as erection (Arnow et al., 2002; Karama765

et al., 2002; Redouté et al., 2000). Overall these results confirm766

the central role of the hypothalamus in human sexual motivation,767

although this role might be more likely related to the regulation of768

autonomic responses than to the appraisal process through which769

erotic stimuli are evaluated as sexual incentives (Redouté et al.,770

2000).771

Erotic stimuli also elicited large activations in the extrastriate772

body area, a higher order visual area of the lateral occipitotemporal773

cortex, known to selectively respond to images of the human body774

or parts of it (Downing et al., 2001). This result is consistent with775

the nature of erotic stimuli typically representing naked bodies.776

Moreover, several studies found that these activations appeared777

to be independent of the gender of the bodies displayed and the778

individuals’ sexual preference (Paul et al., 2008; Ponseti et al., 2006).779

This suggests that the extrastriate body area is mainly sensitive to780

the visual features of erotic stimuli, rather than to their rewarding781

properties.782

4.7. Limitations and strengths783

The present meta-analysis is not free of limitations, demand-784

ing to treat the results with some caution. First, our ALE approach785

ignored information such as peak statistical values or spatial extent786

of functional clusters reported in individual studies. Yet, it would787

be desirable to weigh included studies depending on these criteria,788

as they often reflect the underlying quality of the imaging results789

(Yarkoni et al., 2010). Note however, that this ideal procedure is790

difficult to implement and seldom used in practice, because of the791

need to possess full datasets processed in a homogeneous fashion.792

An additional limitation might come from the heterogeneity793

of the tasks used in the reward literature and included in our794

meta-analysis. First, variations in reward delivery may  act as a con-795

founding effect. As mentioned previously, monetary studies often796

involve probabilistic or performance-dependent rewards, whereas797

food and erotic rewards are usually delivered in a passive and pre-798

dictable way. Moreover, a number of food and erotic studies used799

block designs, whereas most monetary studies used event-related800

designs. These methodological discrepancies may  confound effects801

related to reward type with effects related to how rewards are802

delivered. Note however that the difference in block versus event-803

related designs does not seem to impact reward-related activations,804

at least for erotic stimuli (Buhler et al., 2008). Furthermore, within805

each reward category, we combined foci resulting from a wide806

variety of protocols and contrasts. As a consequence, we might807

have pooled rather heterogeneous results: for instance, a contrast808

between gains and losses in a guessing task is likely to produce dif-809

ferent activations from a contrast between gains and non-gains in a810

classical conditioning task. This has the advantage of revealing the811

most robust and replicable effects across paradigms, but the disad- 812

vantage of limiting our ability to ascribe specific brain regions to 813

discrete reward processes. 814

Finally, it could be argued that the differential activation pat- 815

terns presently observed between rewards are confounded by 816

differences in reward intensity. Disentangling these two hypothe- 817

ses is intrinsically difficult within a meta-analysis. Indeed, in 818

contrast to single studies in which the matching of different con- 819

ditions is under the control of the experimenter, such matching 820

cannot be easily achieved when comparing different groups of stud- 821

ies. However, it should be noted that since this is a coordinate-based 822

meta-analysis, we  are not comparing the amplitude of brain activity 823

between conditions (as would be done by contrasting Betas within a 824

regular GLM analysis), but the spatial consistency of reported peaks 825

of activity between groups of studies (regardless of peak t-values). 826

Yet, this consistency is not influenced by the intensity of the reward 827

stimuli, but rather by their ability to elicit reliable and detectable 828

activity in the brain. 829

Finally, one might be surprised not to observe midbrain activity 830

emerging from our meta-analysis. In fact, all three rewards did elicit 831

activity in the midbrain, but the location of functional clusters was 832

not overlapping between rewards and was not entirely consistent 833

Fig. 3. Overview of the brain regions involved in reward outcome processing as a
function of reward type. (A) “Common reward circuit”, i.e. the brain responding to
monetary, erotic and food rewards. The putative main functional role assigned to
each region is mentioned in italics. Rewards eliciting a particularly robust activa-
tion  in certain regions are mentioned in square brackets. (B) Reward type-specific
regions, i.e. more reliably activated by one reward compared to the other two.
The putative main functional role assigned to each region is mentioned in italics.
Green: “money-specific” regions, Red: “erotic-specific” regions, Blue: “food-specific”
regions, Fuchsia: “primary reward-specific”. (For interpretation of references to
colour in this figure legend, the reader is referred to the web version of this article.)
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with the dopaminergic portion of the midbrain (see Supplemen-834

tary Materials – Fig. S2). This variability likely results from the high835

susceptibility of fMRI signals in the midbrain to noise and artifacts,836

due to local field inhomogeneity, motion and partial volume effects837

(Haber and Knutson, 2010; D’Ardenne et al., 2008). This loss of reli-838

ability of fMRI signals in deeper brain structures warrants a word839

of caution in interpreting the present results as a truly whole-brain840

picture of reward-related activity, and calls in turn for adapted data841

acquisition protocols for those regions in the future (Krebs et al.,842

2011; D’Ardenne et al., 2008).843

Despite these limitations, the present work has several impor-844

tant strengths. To the best of our knowledge, this is the first845

study to systematically compare the neuroanatomical substrates846

of multiple rewards in order to distinguish common from special-847

ized reward-related regions. Moreover, these comparisons were848

performed in a fully objective manner, since we  used a voxel-849

based meta-analytic approach combined with whole-brain results850

only. In particular, by excluding ROI-based studies from our meta-851

analysis, we avoided the confirmation bias inherent to the ROI852

approach, and were able to reveal the most consistent findings in853

the absence of any a priori assumptions. In fact, we had to exclude a854

surprisingly high number of ROI-based studies, which is somehow855

paradoxical considering the only recent availability of objective856

reference (such as the present meta-analysis) for these studies857

in the literature. Perhaps as a consequence, our findings showed858

that regions such as the thalamus and anterior insula were more859

robustly activated by reward outcomes than previously thought.860

Finally, we used a quantitative, random-effect, approach based on861

the estimated convergence of results across studies. This provides862

valuable information in terms of average peak location and spatial863

extent of reward-related brain regions, which should prove useful864

for future ROI-based studies.865

5. Conclusions866

This meta-analysis first reveals that there is ample support in867

the neuroimaging literature for a “common reward circuit” in the868

brain (Fig. 3). Although this finding was to be expected, our results869

offer an objective and quantitative demonstration. Within this cir-870

cuit, the vmPFC appears to be directly responsible for computing871

the experienced value of rewards on a common scale. Strongly con-872

nected to the vmPFC, the ventral striatum is thought to primarily873

reflect prediction error and to contribute to learning and motiva-874

tion, although its pattern of activation is also compatible with the875

computation of experienced value. Interestingly, both the vmPFC876

and ventral striatum have been involved in the valuation phase877

of a number of decision-making paradigms involving primary and878

secondary rewards (Kable et al., 2007; Prévost et al., 2010). FurtherQ2879

meta-analyses are needed to investigate whether the computa-880

tion of experienced value and decision value also engages distinct881

brain structures. As for the amygdala, even though its involve-882

ment in reward learning is still a matter of debate, considerable883

evidence shows that it plays a major role in assigning emotional884

value to rewards. Less often included in the canonical definition of885

the reward circuit, the anterior insula emerged as a key region in886

our meta-analysis. Its role in reward processing is likely related to887

the conscious awareness of emotions triggered by rewards, or to888

risk and salience monitoring. The mediodorsal thalamus, strongly889

activated by all rewards, is thought to play a role in the increased890

arousal induced by rewards. Importantly, in all these regions except891

the thalamus, our analyses revealed variations in peaks or levels of892

activity depending on reward type. These discrepancies are pre-893

sumably attributable to intrinsic differences between rewards or894

between the contexts in which these rewards were delivered. Note895

that these discrepancies might be informative and help elucidate896

the functional roles of specific brain regions in reward processing. 897

For instance, the stronger activation observed in the ventral stri- 898

atum for monetary rewards can be related to the frequent delivery 899

of these rewards in a learning context, and therefore tends to sup- 900

port a role for this brain region in prediction error computation. 901

Complementing this common reward circuit, our meta-analysis 902

revealed specialized reward areas in the brain. The recruitment 903

of specific regions, including the somatosensory cortex (food- 904

specific), extrastriate body area and hypothalamus (erotic-specific), 905

is likely driven by sensory or autonomic properties of the rewards 906

under scrutiny. In addition, the anterior OFC was specifically 907

recruited by monetary rewards, a result that we  interpret in the 908

broader perspective of a dissociation between primary and sec- 909

ondary rewards in the postero-anterior axis of the OFC  (Sescousse 910

et al., 2010). 911

The question of one versus multiple reward circuits in the brain 912

is complex and requires future development. First, it will be instruc- 913

tive to extend the present work in the future, when enough data has 914

been accumulated to run meta-analyses on other types of rewards, 915

such as beautiful faces, pleasant odors or positive social feedback. 916

Addressing previously stated methodological limitations will be 917

another challenge. Image-based meta-analyses, which make use 918

of crucial information such as activation magnitude and spatial 919

extent of clusters, but require access to the original data, seem like 920

a promising avenue (Salimi-Khorshidi et al., 2009; Poldrack, 2008). 921

The present meta-analysis was  focused on the identification of 922

reward-related regions, and studied how the engagement of these 923

regions varies with reward type. Alternatively, it would be infor- 924

mative to investigate how the engagement of these regions varies 925

with task characteristics. As previously mentioned, brain response 926

patterns are likely to fluctuate with the mode of reward delivery, 927

depending on the requirement of a motor response (e.g. passive 928

versus active reward), the involvement of learning (e.g. strategic 929

versus guessing reward task), or the degree of expectation (e.g. 930

probabilistic versus certain rewards). Comparative meta-analyses 931

of reward studies based on these criteria would provide valuable 932

insight into the functional roles of reward-related regions, and help 933

in turn to build a cognitive ontology of reward processing (Poldrack, 934

2008; Yarkoni et al., 2010). 935

Appendix A. Supplementary data 936

Supplementary data associated with this article can be 937

found, in the online version, at http://dx.doi.org/10.1016/ 938

j.neubiorev.2013.02.002. 939
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Supplementary Figures 
 
 

 
 
Fig. S1. Brain activity in the lateral posterior orbitofrontal cortex. The results of the ALE 
meta-analyses run separately for monetary, food and erotic reward outcomes showed that 
the posterior lateral OFC was activated by all three rewards. The ALE maps are overlaid on 
the Colin brain provided with GingerALE (p<0.01 FDR whole-brain corrected and cluster size 
> 320 mm3). 
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Fig. S2. Brain activity in the midbrain. The results of the ALE meta-analyses run 
separately for monetary, food and erotic reward outcomes showed that the midbrain was 
activated by all three rewards, albeit in non-overlapping regions. The ALE maps are overlaid 
on the Colin brain provided with GingerALE (p<0.01 FDR whole-brain corrected and cluster 
size > 110 mm3). 
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Supplementary Tables 
 
 

Brain Region Hemisphere 
MNI peak coordinates ALE value 

(x 103) x y z 

Ventral striatum (nucleus accumbens) 
 Left -14 10 -12 57.44 

 Right 14 10 -8 47.36 

Amygdala Right 24 -2 -18 25.60 

Mediodorsal thalamus Right 4 -12 10 24.03 

Posterior ventrolateral thalamus Right 22 -24 -8 16.53 

Anterior insula / Frontal operculum 
 Left -28 16 -8 18.04 

 Right 36 22 -6 17.45 

Pregenual ACC 
 Left -12 42 6 15.92 

 Right 2 34 8 15.08 

ACC  Right 8 36 24 16.68 

Ventromedial PFC (superior frontal gyrus) 

  0 44 -8 20.80 

  0 58 0 19.30 

 Right 12 60 0 15.08 

Anterior OFC (medial orbital gyrus)  Right 12 48 -22 13.11 

Medial OFC (straight gyrus)  Left 6 32 -18 13.29 

Midbrain  Left -4 -18 -12 17.37 

Posterior OFC (anterior/posterior orbital 
gyrus) 

 Left -18 38 -20 19.40 

 Left -32 32 -16 15.04 

Middle frontal gyrus  Left -26 32 44 26.47 

PCC 

 Left -2 -34 30 19.39 

 Right 2 -20 32 16.37 

 Right 4 -50 18 21.58 

Cuneus / Lingual gyrus  Right 12 -86 4 16.40 

Inferior occipital gyrus  Left -40 -86 2 16.59 

 
Table S1. Monetary reward meta-analysis. This table lists the peak coordinates and ALE 
values of the brain regions reliably activated by monetary reward outcomes (33 studies). All 
reported foci survived a threshold of p<0.01 controlled for false discovery rate (FDR) across 
the whole brain and a minimum cluster size of 600 mm3. 
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Brain Region Hemisphere 
MNI peak coordinates ALE value 

(x 103) x y z 

Ventral striatum (nucleus accumbens) Right 4 10 -8 28.96 

Dorsal striatum (caudate body) 
 Left -10 8 2 15.96 

 Right 8 8 6 19.77 

Amygdala 
 Left -22 -4 -18 28.94 

 Right 22 -6 -16 27.27 

Mediodorsal thalamus   0 -12 8 44.07 

Posterior ventrolateral thalamus  Right 22 -32 0 19.97 

Anterior insula 
 Left -38 14 -12 17.89 

 Right 34 10 -6 22.03 

Pregenual ACC / Ventromedial PFC 
  0 38 8 35.07 

Left -4 46 -2 18.22 

ACC 
  0 20 22 18.41 

 Left -4 6 40 19.60 

Posterior OFC (posterior orbital gyrus)  Left -32 18 -18 18.47 

Hypothalamus 
 Left -2 -4 -12 32.31 

 Right 4 2 -10 29.41 

Precentral gyrus 
 Left -48 6 28 19.79 

 Right 48 8 28 20.57 

Inferior occipital / Temporal gyrus 
 Left -48 -70 -4 36.70 

 Right 48 -62 -6 29.22 

Inferior parietal gyrus  Right 56 -26 38 17.97 

Superior parietal gyrus 
 Left -30 -56 50 28.13 

 Right 34 -56 62 27.05 

Inferior occipital gyrus 
 Left -32 -88 -2 20.03 

 Right 26 -90 6 30.11 

Superior occipital gyrus  Right 32 -80 30 21.07 

 
Table S2. Erotic reward meta-analysis. This table lists the peak coordinates and ALE 
values of the brain regions reliably activated by erotic reward outcomes (26 studies). All 
reported foci survived a threshold of p<0.01 controlled for false discovery rate (FDR) across 
the whole brain and a minimum cluster size of 600 mm3. 
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Brain Region Hemisphere 
MNI peak coordinates ALE value 

(x 103) x y z 

Ventral striatum (putamen / nucleus 
accumbens) 

Left -22 -2 -10 15.64 

 Right 26 2 -10 27.39 

 Right 12 8 -6 14.13 

Dorsal striatum (caudate body) 
 Left -10 10 4 24.03 

 Right 12 16 8 12.95 

Dorsal striatum (dorsal putamen) 
Left -28 2 4 16.12 

 Right 28 -6 4 13.36 

Mediodorsal thalamus 
Left -10 -16 10 21.52 

 Right 12 -22 6 13.06 

Ventrolateral thalamus  Right 14 -14 -4 23.54 

Anterior insula / Frontal operculum 
 Left -32 24 4 30.30 

 Right 34 24 2 28.64 

Anterior insula 
Left -34 16 12 31.70 

Left -30 12 -2 16.11 

Middle insula 

Left -40 -6 14 36.34 

Left -36 2 -6 20.24 

 Right 42 -4 14 25.01 

 Right 42 6 -10 23.21 

Rostral ACC / Ventromedial PFC 
Left -2 48 4 14.43 

  0 42 -4 11.71 

Pallidum Left -22 -10 -6 17.33 

Inferior frontal gyrus  Right 48 10 4 14.84 

Superior frontal gyrus 
 Right -2 24 46 17.64 

 Right 10 22 40 14.56 

Precentral gyrus  Right 62 10 24 16.78 

PCC   0 -32 28 23.78 

Postcentral gyrus 
Left -58 -12 16 24.05 

 Right 62 -2 24 29.77 

 
Table S3. Taste reward meta-analysis. This table lists the peak coordinates and ALE 
values of the brain regions reliably activated by taste reward outcomes (28 studies). All 
reported foci survived a threshold of p<0.01 controlled for false discovery rate (FDR) across 
the whole brain and a minimum cluster size of 600 mm3. 
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