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Abstract
We constantly need to make decisions that can result in rewards of different amounts with

different probabilities and at different timing. To characterize the neural coding of such com-

putational factors affecting value-based decision making, we have investigated how reward

information processing is influenced by parameters such as reward magnitude, probability,

delay, effort, and uncertainty using either fMRI in healthy humans or intracranial recordings

in patients with epilepsy. We decomposed brain signals modulated by these computational

factors, showing that prediction error (PE), salient PE, and uncertainty signals are computed

in partially overlapping brain circuits and that both transient and sustained uncertainty signals

coexist in the brain. When investigating the neural representation of primary and secondary

rewards, we found both a common brain network, including the ventromedial prefrontal cortex

and ventral striatum, and a functional organization of the orbitofrontal cortex according to re-

ward type. Moreover, separate valuation systems were engaged for delay and effort costs when

deciding between options. Finally, genetic variations in dopamine-related genes influenced the

response of the reward system and may contribute to individual differences in reward-seeking

behavior and in predisposition to neuropsychiatric disorders.
Keywords
reward uncertainty, prediction error, subjective value, valuation systems, value-based decision

making, genetic variations
1 BASIC COMPUTATIONS INVOLVED IN DECISION MAKING
We constantly need to make decisions that can result in rewards of different amounts,

types, probabilities, and which occur at various delay durations. To characterize the

neural coding of such computational factors affecting value-based decision making,
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290 CHAPTER 16 Neural coding of computational factors
it is first necessary to understand how they are coded in the brain when no choice

needs to be done. This is the approach taken by our group in the past few years which

focused on understanding how reward information processing is influenced by pa-

rameters such as reward magnitude, probability, or uncertainty. We have used intra-

cranial recordings in patients with epilepsy and fMRI in healthy controls to

decompose brain signals modulated by these computational factors (Caldu and

Dreher, 2007; Dreher et al., 2006, 2008, 2009; Metereau and Dreher, 2012;

Sescousse et al., 2010; Vanni-Mercier et al., 2009).

The focus of this chapter is to characterize how computational factors such as

reward probability and reward uncertainty are coded in the human brain, how differ-

ent types of rewards engage specific brain systems, how the brain assigns values to

different options under consideration, how principles used in models of perceptual

decision making can be extended to value-based decision making, and how polymor-

phisms in genes-affecting dopamine transmission modulate reward-related

mechanisms.
2 MONKEY ELECTROPHYSIOLOGY: MIDBRAIN DOPAMINERGIC
NEURONS AND THE COMPUTATION OF SUBJECTIVE VALUE,
UNCERTAINTY, AND PREDICTION ERROR

A number of mathematical measures have recently been associated with transient

and sustained aspects of dopaminergic responses (Fig. 2). These measures are based

on the fact that rewards can be characterized by probability distributions of reward

values. Two main parameters of probability distributions can then be defined: the

expected value (the anticipated “mean,” first statistical moment of the distribution)

and the variance (second moment) or its square root (standard deviation). The latter

measures the degree of uncertainty in known probability distributions, and entropy

can also be considered as a proxy for uncertainty. In addition, it is possible to define

prediction errors (PEs) as a measure of the deviations from previous reward expec-

tations. PE can be either positive (when the reward delivered is better than expected),

null (when the reward delivered is as expected), or negative (less or no reward

delivered at the expected time) (Schultz et al., 1997; Sutton and Barto, 1998).

PEs are used to learn the value of states of the world and are critical for learning

how to make better choices in the future.

Electrophysiological studies recorded dopaminergic neurons in monkeys during

classical conditioning experiments, in which an association had to be learnt between

a visual predictor (conditioned stimulus) and a rewarding outcome (unconditioned

stimulus). These studies indicate that dopaminergic neurons code in a transient fash-

ion both the expected value at the time of the cue and the PE at the time of the out-

come. This signal may be sent to the striatum and prefrontal cortex (PFC) to

influence reward-dependent learning (Bayer et al., 2007; Schultz, 2000; Schultz

andDickinson, 2000). However, recent electrophysiological studies also indicate that

dopaminergic neurons not only code the expected value and a transient reward
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prediction error (RPE) signal but also a sustained signal during the delay between the

cue and the potential outcome. This sustained signal is maximal with highest reward

uncertainty (i.e., reward probability¼0.5) and may be functionally important for risk

seeking behavior and/or exploratory behavior (Fiorillo et al., 2003; see Section 3).

Together, these results suggest that dopaminergic response may reflect three types

of mathematical measures: the subjective value of the reward at the time of the con-

ditioned stimulus, the uncertainty or variance of reward information during the delay

period between the conditioned stimulus and outcome, and the PE at the time of the

outcome. These signals are sent to a number of neural structures involved in com-

puting value-based signals involved in decision making.

In classical conditioning experiments, each of the factors mentioned before (mag-

nitude, probability, timing uncertainty, and delay) influences the phasic expected

value signal occurring at the time of the conditioned stimuli. That is, the phasic re-

sponse of dopamine neurons to the conditioned stimuli monotonically increases with

probability and magnitude (Tobler et al., 2005) and decreases with the reward delay

in temporal discounting paradigms, both in Pavlovian conditioning (Kobayashi and

Schultz, 2008) and in intertemporal choice (Roesch et al., 2007). Moreover, at the

time of the outcome, the response of dopamine neurons increases with reward delay

and magnitude, and decreases with increasing reward probability (Fiorillo et al.,

2003; Kobayashi and Schultz, 2008). However, the magnitude of the transient re-

sponse of dopaminergic neurons at the outcome appears to be identical for different

magnitudes that are delivered with maximal uncertainty (P¼0.5), despite the fact

that the absolute difference between actual and expected volume magnitude varied

over a large range (Tobler et al., 2005).Thus, the transient responses of dopamine

neurons do not appear to scale according to the absolute difference between actual

and expected reward. Rather, the sensitivity of these neural responses appears to

adapt according to the discrepancy in magnitude between two potential outcomes.
2.1 Human neuroimaging studies on PE
In the past 10 years, a large number of human neuroimaging studies have investi-

gated the neural correlates of the PE signal. A number of these studies suggest that

activity in the ventral striatum and the PFC correlates with PE related to stimulus–

response associations or rewards of different types, such as faces, money, or juice

(Abler et al., 2006; Berns et al., 2001; Bray and O’Doherty, 2007; Dreher et al.,

2006; Fletcher et al., 2001; McClure et al., 2003; O’Doherty et al., 2003). When ex-

amining the influence of reward magnitude during reward anticipation and at the

time of rewarded outcome, increased activity has been observed in several brain re-

gions, particularly in the ventral striatum. For example, increased ventral striatal ac-

tivation was found with increasing magnitude of anticipated gains but not losses

(Knutson et al., 2001, 2005). Several studies also investigated the influence of reward

probability on brain activation. Some gambling studies found that ventral striatal ac-

tivity increased with reward probability (Abler et al., 2006; Preuschoff et al., 2006;

Yacubian et al., 2006), while a cued reaction time study failed to find ventral striatal
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activation as a function of increasing probability (Knutson et al., 2005). In some of

these studies, a region of the medial PFC also showed increasing activation during

anticipation of rewards with increasing probability (Knutson et al., 2005; Yacubian

et al., 2006).

In a recent monetary fMRI study using slot machines varying known reward

probability and magnitude, we could distinguish between transient and sustained sig-

nals using a fixed long anticipatory period (Fig. 1; Dreher et al., 2006).We found that

the midbrain was activated both transiently with the PE signal and in a sustained

fashion with reward uncertainty. Moreover, distinct activity dynamics were observed
FIGURE 1

Task design of the slot machines task. Four types of “slot machines” (types A–D) were

presented pseudorandomly to the subjects. The probabilities of winning different amounts of

money or nothing were indicated, respectively, by the red and white portions of a pie chart

above the slot machines. The slot machine and pie chart remained on the screen throughout

the delay duration (as shown for slot D). Each trial consisted of a brief (1 s) presentation of the

cue (stimulus S1, one of the four slot machines), followed after a fixed delay (14 s) by the

outcome S2 (either $0 or a picture of a $10 or $20 bill, lasting 2 s). This long fixed delay

allowed us to distinguish transient hemodynamic signals associated with the error prediction

signal at S1 and S2 from the sustained signal associated with reward uncertainty during the

delay. During each trial, subjects indicated which “slot machine” was presented by pressing a

response button both at the cue S1 and the outcome S2 (regardless of winning or not).

Reward delivery was not contingent upon subject response.

Figure taken from Dreher et al. (2006) with permission.
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in postsynaptic midbrain projection sites: the PFC responded to the transient PE

signal, while the ventral striatum covaried with the sustained reward uncertainty

signal (Fig. 2). This sustained ventral striatum activity was confirmed by a subse-

quent study reporting that this brain region encodes both expected reward and risk

(Preuschoff et al., 2006). The frontal network we observed both at the time of the cue

and at the time of the outcome was specifically involved with the RPE signal because

it was not significantly activated by reward uncertainty during the delay and was
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FIGURE 2

Transient and sustained modes of activities. (A) Top: Location of transient midbrain

responses covarying with the error prediction signal at the cue S1 (left) and at the rewarded

outcome S2 (right). Consistent with electrophysiological recordings (Fiorillo et al., 2003), the

human midbrain region was transiently activated with higher reward probability at the cue S1

and with lower reward probability at the rewarded outcome S2. Moreover, the midbrain region

showed higher sustained activity with reward uncertainty during the delay period (Dreher

et al., 2006). Bottom: Location of transient lateral prefrontal and anterior cingulate cortices

responses covarying with the error prediction signal at the cue S1 (left) and at the rewarded

outcome S2 (right). Middle: Location of sustained bilateral ventral striatum activities covarying

with the reward uncertainty signal during the delay period. (B) Theoretical measures

associated to the three stages of the task. The expected value or utility function is coded

transiently at the time of the cue, the entropy or variance is coded in a sustained fashion

during the delay period between the cue and the reward, and the PE is coded transiently at the

time of the outcome. Importantly, the expected value increases with reward probability and

the PE decreases with reward probability, while the sustained mode of activity coding the

entropy or variance varies in a highly nonlinear fashion with reward probability.

Figure adapted from Dreher et al. (2006).
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significantly more activated in association with these phasically modeled responses

than in association with a sustained-modeled response related to reward uncertainty

during the delay period. Our results extend previous fMRI reports that the dorsolat-

eral PFC, inferior frontal gyrus, and orbitofrontal cortex activity correlates with a PE

signal related to abstract stimulus–response associations or taste reward, although

some of these studies focused more on ventral striatal activity (Abler et al., 2006;

Berns et al., 2001; Bray and O’Doherty, 2007; Dreher et al., 2006; Fletcher et al.,

2001; McClure et al., 2003; O’Doherty et al., 2003). The lateral PFC may generate

the reward prediction because neurons from this brain region represent predictions

about expected rewards according to the context (Kobayashi et al., 2002; Watanabe

et al., 2002).

In two subsequent fMRI studies, we investigated how PE is modulated not only

by reward probability and magnitude but also by reward type (money, fruit juice, and

erotic stimuli) and by reinforcement nature (reward vs. punishment). In a first study,

we explicitly informed subjects on subsequent reward type (erotic stimuli or

monetary reward), probability, and intensity. We found that activity in the ventral

striatum not only correlated with reward magnitude for both monetary and erotic re-

wards, but also with RPE regardless of reward nature (primary or secondary rein-

forcers; Sescousse et al., 2010).
2.2 Neural coding of the salient PE in monkeys and humans
Based on a wealth of evidence from electrophysiological recording studies in nonhu-

man primates, rodents, and humans, it has been widely assumed that dopaminergic

neurons encode an RPE, with a positive phasic response when the outcome is better

than expected (unexpected reward or omission of expected punishment) and a neg-

ative response when it is worse than expected (unexpected punishment or omission

of expected reward) (Schultz et al., 1997). According to this hypothesis, referred to as

the RPE hypothesis, the sign of the PE is opposite for rewards and punishments.

However, in awake monkeys, recent recordings from the same dopaminergic

neurons for rewards and aversive events point to the coexistence of a phasic dopa-

minergic signal encoding biologically salient events conveying both positive and

negative information (Matsumoto and Hikosaka, 2009). During a Pavlovian proce-

dure, one class of dopaminergic neurons located ventromedially, some in the VTA,

are excited by unexpected rewards and inhibited by unexpected aversive stimuli, as

expected by the RPE hypothesis. Yet, a larger subpopulation of dopamine neurons,

located more dorsolaterally in the substantia nigra pars compacta, are excited both by

unpredictable reward and aversive stimuli, as would predict a salient PE (SPE)

hypothesis. Moreover, recent results in rodents confirm that, while some dopaminer-

gic neurons of the VTA are inhibited by aversive stimuli, others are excited by these

same stimuli (Brischoux et al., 2009). These findings suggest that different groups of

dopamine neurons convey RPE and SPE signals, shedding light on increased striatal

dopamine levels observed not only during appetitive conditioning (Reynolds et al.,

2001) but also during aversive conditioning (Pezze and Feldon, 2004). Together,
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FIGURE 3

Distinguishing prediction error and salient prediction error. (A) Experimental design and

computational model. Subjects learned to associate various cues with four different types of

reinforcers (two appetitive and two aversive) in a classical reinforcement learning paradigm.

Two types of cues were followed by positive reinforcers (apple juice and money) on 50% of

occasions or by a scrambled picture (unreinforced), two other types of cues were followed by

negative reinforcers (salty water and aversive picture) on 50% of occasions or by a scrambled

picture (unreinforced), while some cues were always followed by a scrambled picture (neutral

condition). Top right: Time course of a single trial. After the cue presentation, subjects

pressed a response button, immediately followed by a delay period and by the reinforcer or by

a scrambled picture. Top right (bottom): Salient computational model—predicted neural

response. Schematic showing the mean representation of the SPE signal which responds to

reward and punishment in the same way, as motivationally salient events, generating positive

PE for reinforced trials and negative PE for unreinforced trials. Top right (bottom): Reward

computational model—predicted neural response. The RPE model signals rewards and

punishments in opposite ways, generating a positive PE when an unexpected reward is

delivered or when an expected punition is missed and generating a negative PE when an

unexpected punishment is delivered or an expected reward is missed (Unreinf.,

Unreinforced; Reinf., Reinforced). (B) Gustatory SPE signal. Statistical parametric maps

showing that activity in ACC, bilateral putamen, and bilateral insula correlates with the SPE in

the two gustatory conditions (conjunction analysis). Plotted below are the time courses of

inferredmean neuronal activity aligned to the onset of the reception phase for the four types of

outcomes, in each of these brain regions. Reinforced and unreinforced trials are plotted

separately. Color bars represent T values.

Figure taken from Metereau and Dreher (2012) with permission.
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these results raised the possibility of the coexistence of two brain networks active

during the learning of associations between cues and rewards or punishments: a re-

ward brain network, treating reward and punishment in opposite ways (opposite he-

donic valences), and a salient brain network, which treats them in a similar manner as

motivationally salient events.

In humans, it was unclear whether specific brain structures receiving afferents

from dopaminergic neurons code a SPE and whether this signal depends upon rein-

forcer type. In a recent fMRI study, we investigated this question using temporal-

difference modeling during a classical conditioning learning paradigm with both

aversive and rewarding outcomes (Fig. 3; Metereau and Dreher, 2012). In this

model-based functional magnetic resonance imaging study, we implemented a rein-

forcement learning model to compute the PE, while subjects underwent a Pavlovian

conditioning procedure with two types of rewards (pleasant juice and monetary gain)

and two types of punishments (aversive juice and aversive picture). Cues were as-

sociated with a 50% probability to either one of these four reinforced outcomes

or to a neutral outcome (scramble picture). We tested two types of computational

models. According to the SPE model, responses to reward and punishment appear

in the same way as motivationally salient events, generating positive PE for rein-

forced trials and negative PE for unreinforced trials. In the reward PEmodel, rewards

and punishments respond in opposite ways, generating a positive PE when an unex-

pected reward is delivered or when an expected punition is missed and generating a

negative PE when an unexpected punishment is delivered or an expected reward is

missed. The results revealed that activity of a brain network composed of the stria-

tum, anterior insula, and ACC covaried with an SPE for appetitive and aversive juice.

Moreover, amygdala activity correlated with an SPE for these two reinforcers and for

aversive pictures. These results provide insights into the neurobiological mecha-

nisms underlying the ability to learn stimuli-rewards and stimuli-punishments con-

tingencies, by demonstrating that the network reflecting the SPE depends upon

reinforcement’s type (Fig. 3).
3 COMPUTATION OF UNCERTAINTY SIGNALS IN THE HUMAN
BRAIN

Until recently, it was unknown whether the transient and sustained modes of mid-

brain activities (Fiorillo et al., 2003) could also be observed in humans and whether

they could be distinguished by postsynaptic dopaminergic projection sites. Using

fMRI, we have successfully distinguished transient and sustained dynamics of the

dopaminergic system in healthy young humans using a new reward task based on

the monkey electrophysiology study, that systematically varied monetary reward

probability and magnitude in the absence of choice (Dreher et al., 2006). The results

showed that the human dopaminergic midbrain exhibits similar activity dynamics as

midbrain from nonhuman primates. Moreover, specific dopaminergic projection

sites were activated: (a) the ventral striatum, during anticipation of rewards with
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maximal uncertainty (reward probability¼0.5) and (b) the PFC and anterior cingu-

late cortices (ACC) at the time of the outcome, correlating with a transient PE signal

coding the difference between expected and obtained rewards (Fig. 2). These results

indicate that specific functional brain networks subserve the coding of sustained and

transient aspects of reward information in humans. These results are important be-

cause they support a unified cross-species view in which dopaminergic neurons obey

common basic principles of neural computation and provide important new insights

into human reward information processing.

Our finding of two networks covarying with different reward signals may indi-

cate that dopaminergic projection sites can distinguish between the two signals. It is

also possible that these targets show independent transient (PFC) and sustained (ven-

tral striatum) activities related to the two signals and/or that they help to shape do-

paminergic neuronal activity by differentially modulating their phasic and sustained

modes of firing, which occur independently in individuals neurons (Fiorillo et al.,

2003). This latter hypothesis is supported by anatomical observations that different

populations of dopaminergic neurons are innervated predominantly by the target

areas to which they project, or by the regions that, in functional terms, are the most

closely linked to the target areas (Sesack et al., 2003). For example, in rodents, do-

paminergic neurons projecting to the PFC receive direct reciprocal inputs from this

brain region, but not from the striatum, while dopaminergic neurons projecting to the

striatum receive afferents from that brain region, but not from the PFC, thereby form-

ing two projection systems (Sesack et al., 2003). This suggests a general principle for

midbrain dopaminergic neuronal afferents regulation, the PFC, and the striatum be-

ing responsible for regulating and controlling different modes of dopaminergic neu-

ronal firing.

Interestingly, another study involving choice behavior investigated the neural

correlates of risk, modeled as outcome variance (risk being maximal at 50% prob-

ability), and found increased activation in the insula, lateral orbitofrontal cortex, and

midbrain (Preuschoff et al., 2006). Insula activity also correlated with uncertainty in

other paradigms involving money and nonmonetary stimuli (Grinband et al., 2006;

Huettel et al., 2005).

The discrepancy between the different findings of the ventral striatum coding

either PE or reward uncertainty may be due to several factors. First, most fMRI stud-

ies investigating prediction signal used temporal-difference modeling in the context

of learning paradigms. In contrast, in our early monetary reward fMRI paradigm

(Dreher et al., 2006), there was no learning of cue–outcome associations. So, the pu-

tamen activation we observed during anticipation with maximal uncertainty cannot

be attributed to a learning effect. Second, one limitation of most fMRI studies vary-

ing reward probability is that they could not clearly separate the transient and sus-

tained signals because the delay duration between the conditioned stimulus and the

outcome was either too short or randomly jittered (which is a problem since transient

dopaminergic responses are known to depend upon timing uncertainty) (Abler et al.,

2006; Preuschoff et al., 2006). To address this problem, we have recently used

intracranial recordings in humans to investigate the neural coding of PE and uncer-

tainty with a more precise temporal definition (Fig. 4; Thomas and Vanni-Mercier,

2008; Vanni-Mercier et al., 2009).



Rewarded

Time (ms)

Rewarded

P1 P2 P3

Unrewarded

Right

y = -22 y = -20 y = -31

Left

-1500
-120

-80

-40

0

40

80

120

-120

-80

-40

40

0

80

120

-1000 -500 0

0.25
0.75

0.5
0.5
0 0.25

0.751

500 1000 1500

Time (ms)

-1500 -1000 -500 0 500 1000 1500

Unrewarded

0
-120

-100

-80

-60

-40

-20

0

0.25

Reward probability

(A)

(B)

(C)

E
R

P
 a

m
pl

itu
de

 (
mV

)

A
m

pl
itu

de
 (

mV
)

0.5 0.75 1

FIGURE 4

The hippocampus codes the uncertainty of cue–outcome associations. (A) Location of

intracranial electrode contacts. Coronal MRI slices from the three subjects showing the

location of the intracranial electrode contacts in the hippocampus. The contacts in the

hippocampus yielding the largest potentials are shown in bold square. (B) Uncertainty coding

in the human hippocampus. Each color line represents the mean ERPs for each slot machine

(P¼0, 0.25, 0.5, 0.75) at the outcome period. At the time the third spinner stopped (�500 to

0 ms), the subject knew whether they would win themoney shown at time t¼0. Hippocampal

ERP amplitudes code uncertainty (maximal for P¼0.5) at the outcome (�500 to 0 ms),

regardless of winning or not. (C) Mean peak ERP amplitudes averaged across subjects at the

outcome, as a function of reward probability, both for rewarded and for unrewarded trials.

Figure adapted from Vanni-Mercier et al. (2009) with permission.
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Although hippocampal–midbrain functional interactions are well documented

and the hippocampus receives reward-related information not only from midbrain

dopaminergic neurons but also from other components of the reward system, such

as the amygdala and orbitofrontal cortex (Suzuki and Amaral, 1994), it was still

unknown whether it codes statistical properties of reward information, such as PE

or reward uncertainty. To answer this question, we recorded hippocampal activity

in epileptic patients implanted with depth electrodes while they learned to associate

cues of slot machines with various monetary reward probabilities (P) (unlike our

early fMRI monetary reward paradigm in which probability were explicitly given

to the subjects) (Vanni-Mercier et al., 2009; Fig. 4). Subjects estimated the reward
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probability of five types of slot machines that varied with respect to monetary reward

probabilities P (0–1) and that could be discriminated by specific fractal images on

top of them. Trials were self-paced and were composed of four distinct phases: (1)

Slot machine presentation (S1): subjects pressed one of two response keys to esti-

mate whether the slot machine frequently delivered 20E or not, based on the out-

comes of all the past trials; (2) delay period (1.5 s): subject’s key press triggered

three spinners to roll around and to successively stop every 0.5 s during 0.5 s; (3)

outcome S2 (lasting 0.5 s): the third spinner stopped and revealed the trial outcome

(i.e., fully informing the subject on subsequent reward or no reward delivery). Only

two configurations were possible at the time the third spinner stopped: “bar, bar,

seven” (no reward) or “bar, bar, bar” (rewarded trial); (4) Reward/No reward deliv-

ery (1 s): picture of 20E bill or rectangle with 0E written inside.

The results showed that the amplitudes of hippocampal negative event-related

potentials (ERP), covaried with uncertainty at the outcome, being maximal for

P¼0.5 and minimal for P¼0 and P¼1, regardless of winning or not (Fig. 4). This

inverted U-shape relationship is typical of uncertainty coding and is incompatible with

PE, novelty, or surprise coding, which would have predicted a negative monotonic cor-

relation betweenERP amplitudes and increasing reward probability (Dreher et al., 2006;

Fiorillo et al., 2003). This uncertainty coding of cue–outcome associations by the hippo-

campusmayconstitute a fundamentalmechanismunderlying the role of this brain region

in a number of functions, including attention-based learning, associative learning, prob-

abilistic classification, andbindingof stimuluselements, thatuntil now,have receivedno

unified explanation concerning the underlying information processing performed by the

hippocampus to achieve them.We propose that the uncertainty coding of cue–outcome

associationsmayconstitute thegeneralcomputationalmechanismusedby thehippocam-

pus to achieve these different functions. The transient uncertainty signal emitted by the

hippocampusat the outcomemayplaya complementary role to the sustaineduncertainty

signal emitted by midbrain dopaminergic neurons during the delay period between the

cue and the outcome. This finding constitutes a major advance in the knowledge of the

functional properties of the human hippocampus and has crucial implications for under-

standing the basic neuralmechanisms used by the brain to extract statistical relationships

from the environment. It is clear that an ubiquitous coding of uncertainty exists in the

human brain, particularly in themidbrain, ventral striatum, insula, ACC, and orbitofron-

tal cortex (Dreheret al., 2006;Hsuet al., 2005;Preuschoff et al., 2006, 2008;Tobler et al.,

2007); and the present study revealed that the hippocampus also participates to uncer-

taintyprocessing.Future studies are needed topinpoint the specific rolesand time-course

of each structure in computing uncertainty in different contexts.
4 SEPARATE VALUATION SYSTEMS FOR MAKING DECISIONS
RELATED TO DELAY AND EFFORT COSTS

When presented with several options, we need to assign subjective values to each of

them to make a choice. This valuation needs to weight available options in terms of

cost and benefit (the prospect of reward) in order to select the option with the highest
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subjective value. Psychological and economic studies have shown that outcome

values are discounted with longer delays, an effect known as temporal discounting.

A recent electrophysiological study demonstrated that when monkeys choose be-

tween sooner smaller available rewards and later larger rewards, the longer the delay

of the later larger reward, the less firing of dopaminergic neurons at the time of the

conditioned stimuli (Kobayashi and Schultz, 2008). Moreover, this reduction in fir-

ing rate followed a hyperbolic decay function similar to that observed in choice be-

havior. In addition, dopamine responses increased with longer delays at the time of

the delayed larger reward delivery, interpreted as reflecting temporal uncertainty and

partial learning. These fundamental results establish that dopamine responses reflect

the subjective reward value discounted by delay and may provide useful inputs to

neural structures involved in intertemporal choices.

Recent fMRI findings on delay-discounting support two opposite theories.

According to the first set of experiments, there may be two separate systems in

the brain: a limbic system computing the value of rewards delivered immediately

or in the near future based on a small discount factor, and a cortical system comput-

ing the value of distant rewards based on a high discount factor (McClure et al., 2003,

2007; Schweighofer et al., 2007, 2008; Tanaka et al., 2004). Discounting would

result from the interaction of these two systems associated with different value sig-

nals. According to the second theory, based on a recent fMRI study, there would be a

single valuation system simply discounting future rewards (Kable and Glimcher,

2007). One way to conciliate these apparent opposite views is that the striato-

prefrontal network might integrate information that is encoded elsewhere in the brain

into a single value signal, but that immediate and delayed outcomes activate different

types of information that are used to compute the reward value (Rangel et al., 2008).

One further recent finding is that the orbitofrontal cortex may separate the represen-

tation of the temporal discount factor applied to distant rewards from the represen-

tation of the magnitude of the reward, suggesting that these quantities may be

integrated elsewhere in the brain.

Standard theories of economic decision making do not distinguish between

decisions related to different types of costs, such as delay or effort costs. A choice

is made after a valuation stage, regardless of the nature of the cost. However, lesion

studies in rodents suggest at least partial dissociations between the neural structures

used to assess delay- and effort-based decision making (Floresco et al., 2008;

Rudebeck et al., 2006; Walton et al., 2006). Despite the fundamental importance

of these animal studies for paving the way in identifying the neural substrates in-

volved in making decisions about delay and effort costs, it is unknown whether these

circuits can be generalized to humans and whether they specifically concern the val-

uation stage. Indeed, specifying the roles of brain structures specifically involved

during the valuation stage, and not during the subsequent waiting/effort periods,

has proved difficult because animal studies cannot pinpoint exactly at what point

in the decision-making process a lesioned animal is impaired. Yet, a number of them

have shown that it is neither the ability to wait nor the exertion of effort per se that is
impaired by the use of control conditions (Rudebeck et al., 2006).
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Although a few neuroimaging studies started to shed some light on the neural

substrates involved in processing subjective value during delay discounting, virtually

nothing is known about how effort is discounted in humans. Animal studies demon-

strated that the ACC, the ventral striatum, and the orbitofrontal cortex make specific

contributions to decision when costly options involve an effort or a delay (Rushworth

et al., 2007; Walton et al., 2006). However, in humans, it is unclear whether there are

dissociable pathways underlying different types of costs such as effort and delay to

reward.

In order to answer this question, we designed a delay/effort-discounting task

involving primary rewards (visual erotic stimuli) (Prevost et al., 2010). Heterosexual

men were scanned in an event-related fMRI paradigm while performing the task

(Fig. 5). On every trial, an incentive cue (fuzzy pictures of naked women) briefly

appeared on a screen and was followed by the instruction (delay or effort), together

with a thermometer indicating the level of delay or effort. Depending on the incen-

tive cue and the proposed cost level, subjects decided whether to invest in the pro-

posed effort (to tolerate the proposed delay) to view the erotic image in clear for 3 s

or to perform a minimal effort (to wait for only 1.5 s) to view it for 1 s only. Then,

subjects either waited passively in the delay condition (range: 1.5–9 s) or squeezed a

hand-grip in the effort condition. We found that choices of the costly option

depended upon the subjective value of incentive cues, as indexed by postscan ratings

of these cues, and upon the required level of delay and effort.

We found that humans devalue rewards associated with physical effort in a strik-

ingly similar fashion to those they devalue that are associated with delays, and that a

single computational model derived from economics theory can account for the be-

havior observed in both delay discounting and effort discounting (Fig. 6). However,

our neuroimaging data revealed that the human brain uses distinct valuation subsys-

tems for different types of costs, reflecting in opposite fashion-delayed reward and

future energetic expenses. The ventral striatum and the ventromedial PFC represent

the increasing subjective value of delayed rewards (Fig. 6), whereas a distinct net-

work, composed of the ACC and the anterior insula, represents the decreasing value

of the effortful option, coding the expected expense of energy (Fig. 6).

To test whether the brain networks identified with subjective valuation of delay

and devaluation of effort engage separate neural systems, we also performed direct

comparisons of the activities of brain regions in which the positive correlation with

subjective value of the delayed reward was significantly greater (respectively lower)

than the negative correlation with subjective value of the effortful reward. These di-

rect whole-brain statistical comparisons of the effects of subjective value in the effort

and delay conditions, as well as ROI comparisons between beta estimates, demon-

strated the specificity of the brain networks identified in the valuation of delayed re-

ward and in the devaluation of effortful reward.

The ventral striatum, theACC, and the vmPFCare strongly implicated in cost/benefit

decision making. Yet, their relative roles have never been directly simultaneously

compared using a similar design for decisions concerning delay and effort costs. Our

paradigm, which separately manipulated the benefit (cue) and the cost indicates that
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FIGURE 5

Delay discounting (A) and effort discounting (B) paradigms using primary rewards. On each

trial, a fuzzy erotic picture briefly appeared on a screen and was followed by the instruction

“Wait?” or “Squeeze?,” together with a thermometer indicating one of six possible levels of the

proposed delay period to wait or effort to invest (ranging from 1.5 to 9 s for the delay and from

15% to 90% of subjects’ maximal strength for the effort). Depending on the incentive cue and

the proposed level of cost, subjects chose between the costly option and a default option

having a minimal cost (1.5 s of waiting or 15% of maximal strength to exert). Then, they either

waited passively during the delay period or produced the effort, before seeing the erotic

picture clearly for a short time period (small reward) if they rejected the costly option, or a

longer period of time (large reward) if they accepted it. The outcome and the intertrial interval

lasted for a total of 4.5 s plus a jitter of�1 s in both options, avoiding that subjects adopted the

strategy of choosing more the default option to see more pictures.

Figure taken from Prevost et al. (2010) ***with permission.
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during the effort condition, ventral striatal and vmPFC responses correlate neither with

the subjective value of the effortful reward nor with the level of proposed effort. This

result demonstrates that the ventral striatal value signal is not discounted by effort,

and two recent rodent studies have come to a similar conclusion (Gan et al., 2010;

Walton et al., 2009). In particular, ventral striatal phasic dopamine release has been

reported to reflect the magnitude of the benefit, but not the expected effort (Gan

et al., 2010). Consistent with this finding, ventral striatal activity positively correlated
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FIGURE 6

Separate valuation subsystems for delay and effort decision costs. Top: Subjective value of

rewards associated with the two available options according to the proposed level of delay (A)

and effort (B). The red/blue lines represent the subjective value of the reward associated with

the costly/default option. Middle (C) Results from the parametric regression analysis showing

areas in which activity is positively correlated with the subjective value of delayed rewards.

Activity in the ventral striatum and ventromedial prefrontal cortex increases as the subjective

value of delayed rewards increases. (C) Right: Plots of the b values representing the slope of

the linear regression between neural activity and the subjective value of the delayed reward

(light gray), the rating of the cue (red), and the proposed level of delay (orange) in each ROI.

(D) Results from the parametric regression analysis showing areas in which activity is

negatively correlated with the subjective value of the reward associated with the costly effort.

Activity in the anterior cingulate cortex and bilateral insula decreases as the subjective value

of effortful rewards increases. (D) Right: Plots of the b values representing the slope of the

linear regression between neural activity and the subjective value of the effortful reward (dark

gray), the rating of the cue (red), and the proposed level of effort (orange) in each ROI.

Figure adapted from Prevost et al. (2010) with permission.

3034 Separate valuation systems for making decisions
with the rating of the cue (benefit) in both the delay and effort conditions but was not

modulated by the proposed level of effort in our experiment. Thus, our current results

help to pinpoint the specific roles of brain regions specifically involved during the val-

uation stage of decisions related to delay and effort costs.
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Our delay-discounting findings suggest that subjective valuation signals of erotic

rewards really experienced inside the scanner are computed in similar limbic fronto-

striatal networks than nonexperienced secondary (monetary) rewards, delayed from

minutes to month/years (Kable and Glimcher, 2007). Therefore, the neural response

to both primary and secondary reinforcers follows similar delay-discounting functions,

suggesting that valuation of delayed rewards may obey common basic principles of

neuronal computation, regardless of the reward nature and the delay duration incurred

before reward delivery. In contrast, our effort-discounting results demonstrate a critical

role of the ACC–anterior insula network for evaluating whether or not it is worth pro-

ducing a given effort for the reward at stake. This implies that the ACC is not merely

involved whenever it is necessary to evaluate two competing options but instead spe-

cifically when evaluating the benefits of exerting more effort for a higher reward as

compared to a less rewarding option that requires less energy expenditure.

In summary, our data shed new light on value-based decision-making signals in

the human brain by revealing that distinct valuation subsystems are engaged for dif-

ferent types of costs and code in opposite fashion-delayed rewards and future ener-

getic expenses. From an evolutionary perspective, separate valuation systems may

have evolved through the need of responding to distinct types of costs in different

environments. For example, some primate species are willing to tolerate delay costs

but are less inclined to exert more effort and to travel farther to obtain greater reward,

while the opposite is true for other species (Stevens et al., 2005). Finally, our dem-

onstration that separate neural systems track the subjective value of rewards associ-

ated with different types of costs may prove useful for understanding impulsive

(delay aversion) and apathetic (effort aversion) behavior in a number of neuropsy-

chiatric disorders known to impair the capacity to select between available options

based on an evaluation of their potential costs and benefits (Paulus, 2007).
5 A COMMON NEURAL CURRENCY IN THE HUMAN BRAIN?
As noted previously, our behavior is motivated by rewards of different nature among

which we frequently need to choose. Because there is no single sense organ transduc-

ing rewards of different types, our brainmust integrate and compare them to choose the

options with the highest subjective value. It has been proposed that the brain may use a

“common reward currency” that can be used as a common scale to value diverse be-

havioral acts and sensory stimuli (Sugrue et al., 2005). The need for this common cur-

rency arises from the variety of choices we are facing in our daily life.

Recent behavioral studies in monkeys showed that monkeys differentially value

the opportunity to acquire visual information about particular classes of social im-

ages. Male rhesus macaques sacrificed fluid for the opportunity to view female peri-

nea and faces of high-status monkeys, but required fluid overpayment to view the

faces of low-status monkeys. This work uses a behavioral method to quantify

how nonhuman primates are likely to weigh one type of reward against another

(Deaner et al., 2005). In humans, looking at other people can also be rewarding,

and the opportunity to view pictures of the opposite sex is discounted by the duration
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of the delay to view the pictures (Hayden and Platt, 2007). Attributing value to avail-

able options is impaired by orbitofrontal cortex lesion and recent electrophysiolog-

ical results indicate that some neurons in the orbitofrontal cortex encode the values of

offered and chosen goods (Padoa-Schioppa and Assad, 2006). Moreover, when a

monkey is offered one raisin versus one piece of apple, neurons in the orbitofrontal

cortex encode the value of the two goods independently of visuospatial factors and

motor responses (contrary to other brain areas in which value modulates activity re-

lated to sensory or motor processes). These results make an essential distinction be-

tween choosing between goods and choosing between actions. In addition, a classical

and general question is how the neuronal representation of value depends upon be-

havioral context. Although some authors have proposed that the encoded value in

the orbitofrontal cortex is relative (Tremblay and Schultz, 1999), recent work sug-

gests that neuronal responses in the orbitofrontal cortex are typically invariant for

changes of menu, that is, orbitofrontal neuronal response to one particular good usu-

ally does not depend on which other goods are available at the same time (Padoa-

Schioppa and Assad, 2008). These authors proposed that orbitofrontal neuronal

activity encodes economic value rather than relative preference.

Because of the properties mentioned above, the orbitofrontal cortex is likely to be

an important brain structure involved in the comparison between different types of

goods. However, all the electrophysiological and brain imaging studies published so

far compared choices between goods of identical nature (e.g., only food items). Yet,

based on the “common currency” concept, there should be a common brain network

coding for different types of goods. Many fMRI studies are consistent with this idea,

since common brain structures are involved in reward processing, regardless of reward

nature. For example, increased midbrain, ventral striatum, and orbitofrontal activities

have been observed with different types of rewards, such as monetary gains (Abler

et al., 2006; Dreher et al., 2006; O’Doherty, 2004), pleasant taste (McClure et al.,

2003; O’Doherty, 2003), visual erotic stimuli (Karama et al., 2002; Redoute et al.,

2000), beautiful faces (Bray and O’Doherty, 2007; Winston et al., 2007), drugs such

as cocaine (Kufahl et al., 2008; Risinger et al., 2005) as well as pain relief (Seymour

et al., 2004, 2005, 2007). However, all these neuroimaging studies only investigated

one reinforcer at a time and did not compare any two of these reinforcers directly. This

was precisely the goal of a recent fMRI study we performed to compare the common

and distinct brain networks involved in processing primary and secondary rewards

(Sescousse and Dreher, 2008; Sescousse et al., 2010).
6 ONE OR SEVERAL REWARD SYSTEMS? SPECIFIC
ORBITOFRONTAL REGIONS CODE EXPERIENCED VALUE
FOR PRIMARY AND SECONDARY REWARDS

Humans are motivated by a wide range of vegetative rewards (such as food and sex)

and nonvegetative rewards (such as money, power, fame, etc.). However, it is unclear

whether different types of reinforcers recruit distinct or common neural circuits
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(Fig. 7). For example, in a recent study, we compared brain activations to monetary

gains and erotic pictures in an incentive delay task (Sescousse et al., 2010). Despite

their critical sociobiological importance, visual sexual stimuli have never been stud-

ied as reinforcers, but rather as arousing stimuli in passive viewing paradigms
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Antero-posterior dissociation within the orbitofrontal cortex according to reward nature.

(A) Task design. Subjects first saw a cue informing them about the type, probability, and

intensity of an upcoming reward. Three cases are represented here: a 75% chance of

receiving a high amount of money (top), a 25% chance of seeing a low erotic content picture

(middle), and a sure chance of getting nothing (control trials; bottom). After a short delay and

a target discrimination task, subjects saw the outcome, which was contingent on both the

announced probability and their performance on the discrimination task. Reward outcomes

consisted either in a monetary amount displayed on a safe (top) or an erotic picture (middle)

and were followed by the rating of their subjective value on a continuous scale. Nonrewarded

and control trials displayed a scrambled picture at outcome (bottom). (B) The anterior

orbitofrontal cortex codes secondary reward (money), while the posterior and medial

orbitofrontal cortex code primary reward (erotic stimuli). Brain regions specifically activated

by monetary rewards outcomes are shown in blue-green, and those specifically activated by

erotic rewards are shown in red-yellow. Mean percent signal change shows an interaction

between reward type and orbitofrontal cortex region in both the left and right sides of the brain.

Error bars indicate standard error to the mean.

Figure taken from Sescousse et al. (2010) with permission.
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focusing on sexual function. They can be considered as “primary rewards,” in the

sense that they have an innate value and satisfy biological needs. Conversely, money

is defined as a “secondary reward,” because its value is more abstract and needs to be

learned by association with primary rewards.

We hypothesized that monetary and erotic outcomes would activate both shared

and distinct cerebral networks. Based on recent fMRI studies, we hypothesized that

core components of the reward system, such as the midbrain, ventral striatum, and

ACC would form the core of the shared network (“common currency” network). We

also hypothesized a functional dissociation within the orbitofrontal cortex based on a

meta-analysis of neuroimaging studies involving different types of rewards. This

meta-analysis proposed a postero-anterior dissociation in the orbitofrontal cortex,

with more complex or abstract reinforcers being represented more anteriorly than

less complex reinforcers (Kringelbach, 2005). That is, we expected erotic rewards

to activate more robustly the posterior part of the orbitofrontal cortex, while the more

anterior part of this brain region would be more engaged by secondary rewards. In

addition, a crucial question was to know whether the neural correlates of PE and

expected value could be identified for visual erotic stimuli, which cannot be ascribed

an objective value (unlike the amount of monetary reward).

To test our hypotheses, we designed an fMRI experiment comparing brain

responses to monetary and visually erotic rewards. Young heterosexual males per-

formed a new event-related fMRI paradigm varying reward nature (money vs. erotic

stimuli), reward probability and reward intensity. The structure of each trial was as

follows. During anticipation, a cue carried information about the type (monetary or

erotic), the probability (0.25, 0.50, or 0.75), and the intensity (high or low) of the

upcoming reward. Subjects then had to perform a simple discrimination task by

pressing a specified response button for a visual target. At the time of the outcome,

they were presented either with “scrambled” pictures (no reward), erotic images, or a

picture of a safe indicating an amount of money. At that time, they also had to rate the

reward value (of money or erotic stimuli) on a continuous scale.

At the time of outcome, robust BOLD signal was observed for both rewards in a

brain circuit including the striatum, the ACC, the midbrain, and the anterior insula.

These regions showed a parametric response with the hedonic value, consistent with

the idea of a “common neural currency.” Moreover, as expected, an antero-posterior

dissociation was observed in the lateral orbitofrontal cortex at the time of reward

outcome, monetary gains being specifically represented in the anterior part of the

orbitofrontal cortex, while erotic pictures eliciting activation in its posterior part.

This result is important because it identifies a new functional division within the

orbitofrontal cortex, with more anterior regions supporting secondary rewars and

evolutionarily more ancient orbitofrontal region representing experienced value of

primary reward.

Another key finding of this study is that PE was computed in similar brain regions

for monetary and for erotic rewards. PE was defined as the absolute difference be-

tween the outcome value and the prediction, where the outcome value was measured

by the hedonic ratings and the prediction by the product of expected reward intensity

by probability. Brain activity in the ventral striatum, anterior insula, and ACC was
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shown to positively correlate with PE, suggesting that PE signals might be essentially

computed in the brain regions commonly activated by both rewards. These results

extend the concept of PE to erotic rewards and expand our understanding of reward

functions by showing that a common brain network is activated by nonvegetative and

vegetative rewards, and that distinct orbitofrontal regions respond differentially to

various kinds of rewards.

These results are interesting when considering a recent fMRI study suggesting

that there may be a single valuation system that discounts future rewards (Kable

and Glimcher, 2007). Another fMRI study supports the idea of a “common neural

currency” for two types of rewards (Izuma et al., 2008). This study showed that

the acquisition of one’s good reputation robustly activated reward-related brain

areas, such as the striatum, and these areas overlapped with those activated by mon-

etary rewards. In summary, these studies together with a recent meta-analysis of

functional neuroimaging studies from our group comparing the neural structures en-

gaged by different primary and secondary rewards suggest that individuals use some

of the same circuits to process money and other types of rewards, in the absence of

choice between them (Sescousse et al., in press).
7 FROM PERCEPTUAL DECISION MAKING TO VALUE-BASED
DECISION MAKING

Perceptual decisions are made when sensory evidence accumulated over time

reaches a decision threshold. Because decisions are also guided by prior information,

one important factor that shapes how a decision is adaptively tuned to its context is

the predictability of forthcoming events. Mathematical models of decision making

predict two possible mechanisms supporting this regulation: an adjustment of the dis-

tance to the decision threshold, which leads to a change in the amount of accumulated

evidence required to make a decision or a gain control of the sensory evidence, lead-

ing to a change in the slope of the sensory evidence accumulation. We recently

showed that predictability of the forthcoming event reduces the distance to the

threshold of the decision (Domenech and Dreher, 2010). Using model-driven fMRI,

we found that the BOLD response in the ACC correlates with the distance to the de-

cision threshold but not with the slope of sensory evidence accumulation, suggesting

that this brain region adjusts the distance to the threshold to the current amount of

predictive information. Moreover, the dorsolateral prefrontal and intraparietal corti-

ces accumulated sensory evidence over time.

One important remaining issue is to integrate the approach of sequential sampling

model of perceptual decision making and value-based decision making in a general

framework. Our hypothesis is that models of perceptual decision, such as sequential

sampling models, can be extended to value-based decision making by proposing that

the distance between options modulates the slope of the sensory evidence accumu-

lation. When the outcomes of options are uncertain, we must also consider the degree

of uncertainty present. According to sequential sampling models, choices are the
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result of a dynamic process during which the decision maker compares options

against each other to update a preference state. In contrast, economic theories (such

as prospect theory) explaining why people’s decisions under risk deviate from stan-

dard economic view of expected utility maximization may be limited because they

do not explain the probabilistic nature of preferential choice, that is, why an individ-

ual makes different choices in nearly identical situations, nor why these “irrational”

choices are more frequent when uncertainty increases. We have recently designed a

new study investigating how different value-related signals are computed in the brain

when making value-based choices, focusing on the representation of the subjective

distance between options, the subjective value of the chosen option, and choice un-

certainty (Domenech and Dreher, 2008). This fMRI paradigm investigates choice

behavior between options leading to different types of probabilistic primary rewards.

Briefly, young heterosexual males, drink deprived for 12 h, were scanned in a new

fMRI paradigm while choosing between two gambles, one rewarded by a very small

amount of fruit juice (0.5 ml) and the other by visual erotic stimuli (pictures of naked

women). Participants experienced both types of primary rewards directly inside the

scanner. For each trial, two pie charts indicated the reward probabilities, varying in-

dependently (e.g., P¼0.75 juice vs. P¼0.5 erotic stimulus). One important aspect of

the task is that the magnitude of the reward was kept constant. Therefore, choices

were made on the basis of preference for a type of reward and on the basis of reward

probability.

We first estimated the preference of each participant for fruit juice over an erotic

picture and expressed it as an equivalent offer, by fitting, for each participant a

logistic model of the probability of choice that included the probability of being

rewarded by the fruit juice, the erotic picture and the trial number as explanatory

variables. This last variable accounted for a possible drift of the preference during

the experiment and was included in the model as a control. The preference was com-

puted as the ratio of the parameter estimates for the picture and drink. Then, the sub-

jective distance between options for each offer was computed as the difference

between the subjective value of the juice option and the subjective value of the erotic

picture option.

Behavioral results indicated that participants had heterogeneous preferences,

some preferring juice over pictures, others pictures over juice. Response times

increased linearly with choice uncertainty, indicating that the decision process slows

down as the subjective distance between options decreases and as it becomes harder

to discriminate which option is the best. Conversely, response times decreased as the

subjective value of the chosen option increased, reflecting higher motivation for the

favored choice. Moreover, the proportion of choice of a given option varied as a sig-

moidal function of the distance between the subjective values of each option, show-

ing that probability of choice is effectively modulated by the difference between

subjective values of the available options.

The brain imaging results revealed that, with increasing difference between sub-

jective values, activity increased in the medial anterior and lateral parts of the orbi-

tofrontal cortex and the midbrain, reflecting computation of the distance between
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options in a “common currency” space. The same orbitofrontal regions coding the

subjective distance between options at the time of decision also coded the subjective

value of the chosen option.

Moreover, brain regions coding choice uncertainty involved the ACC, the bilat-

eral anterior insula, and the inferior frontal gyri. This activity is likely to reflect the

slowing down of the decision process observed behaviorally. Importantly, BOLD

activity in the orbitofrontal cortex did not correlate with choice uncertainty, even

when lowering the statistical threshold. Overall, these results indicate a functional

dissociation between two brain networks: the orbitofrontal cortex, which codes

the subjective values related to the goal of the decision and the ACC/anterior insula

network, which codes the uncertainty on these values. These results indicate that the

same orbitofrontal cortex region codes different value-related signals and empha-

sizes a brain network composed of the ACC and the anterior insula that computes

choice uncertainty.

To conclude, the studies reviewed above indicate that the human orbitofrontal

cortex is not only involved in processing a number of value signals, such as the

subjective values of stimuli, but also contributes to processing signals related to

the decision making process itself, such as the distance between the subjective

value of different options, thereby coding signals informing about what action

to take next.
8 VARIATION IN DOPAMINE GENES INFLUENCE REWARD
PROCESSING

Both reward processing and decision making engage brain structures that lie on

the ascending dopaminergic pathways. An important axis of current research is to

study the brain influence of genes that affect dopaminergic transmission in order

to clarify the biological mechanisms underlying interindividual differences and vul-

nerability to pathology related to the dysfunction of the dopaminergic system (Caldu

and Dreher, 2007). Although there are clear individual genetic differences regarding

susceptibility to and manifestation of these neuropsychopathologies, the influence of

genetic predispositions and variations on activation of the human reward system re-

mains poorly understood.

Recent neuroimaging and behavioral studies have focused on the genetic varia-

tions of dopamine receptors, especially DRD2 and DRD4, and a number of genes

coding for enzymes and transporters involved in the dopaminergic transmission,

such as the catechol-O-methyltransferase (COMT) and the dopamine transporter

(DAT). For example, polymorphisms in dopamine receptor (DRD4) and monoamine

oxidase A (MAOA) genes showed significant associations with efficiency of han-

dling conflict as measured by reaction time differences in an attention task and mod-

ulate ACC activation (Fan et al., 2003). Moreover, the role of the DRD2
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polymorphism in monitoring negative action outcomes and feedback-based learning

was tested during a probabilistic learning task (Klein et al., 2007). A1-allele carriers,

with reduced dopamine D2 receptor densities, showed lower posterior medial frontal

cortex activity, involved in feedback monitoring, and learned to avoid actions with

negative consequences less efficiently. The authors suggested that dopamine D2 re-

ceptor reduction seems to decrease sensitivity to negative action consequences,

which may explain an increased risk of developing addictive behaviors in A1-allele

carriers. Recent behavioral and computational modeling works also suggest indepen-

dent gene effects (DARPP-32, DRD2, COMT) on reinforcement learning parameters

that contribute to reward and avoidance learning in humans. These findings support a

neurocomputational dissociation between striatal and prefrontal dopaminergic

mechanisms in reinforcement learning (Frank et al., 2007), proposing that prefrontal

dopamine is involved in regulating exploration, while striatal dopamine is involved

in learning. In line with this view, Humphries et al. (2012) showed that tonic dopa-

mine in the basal ganglia can also participate in the regulation of the exploration–

exploitation trade-off.

Two important proteins contribute to terminating the action of intrasynaptic

dopamine in the brain: COMT, which catabolizes released dopamine, and the

DAT, which plays a crucial role in determining the duration and amplitude of dopa-

mine action by rapidly recapturing extracellular dopamine into presynaptic terminals

after release. In humans, the COMT gene contains a common and evolutionarily re-

cent functional polymorphism that codes for the substitution of valine (val) by me-

thionine (met) at codon 158, referred to asVal158Met polymorphism. The COMT

enzyme is involved in the metabolic degradation of catecholamines, converting do-

pamine into 3-methoxytyramine and norepinephrine into normetanephrine. Because

the COMT protein containing methionine is relatively thermolabile, its activity is

lower at body temperatures than the COMT valine protein, which is fully active

at body temperature. Hence, individuals with two copies of the met allele (met/

met) have 25–75% reduction in COMT enzyme activity, and therefore presump-

tively more baseline synaptic dopamine, compared to individuals with two copies

of the val allele (val/val) (Chen et al., 2004; Lachman et al., 1996).

The DAT1 gene (SLC6A3) includes 15 exons, with a variable number of tandem

repeat (VNTR) polymorphisms in the 15th exon, a region encoding the transcript’s

30 UTR (Vandenbergh et al., 1992). The 40-bp VNTR element is repeated between 3

and 13 times but in most of the population occurs with greatest frequency in the

9- and 10-repeat forms. The expression of the DAT1 9-repeat allele is lower than

the 10-repeat allele (Heinz et al., 2000; Mill et al., 2002; VanNess et al., 2005), al-

though one study reported the opposite allelic associations (Van Dyck et al., 2005).

Thus, the DAT1 10-repeat allele, associated with increased expression of the gene,

presumably leads to relatively decreased extrasynaptic striatal dopamine levels. This

is consistent with a human SPECT study reporting increased striatal DAT availabil-

ity in 9-repeat carriers relative to 10-repeat carriers (Jacobsen et al., 2000), although

another study failed to support this (Heinz et al., 2000). Mice lacking the DAT1 gene
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show extensive adaptative changes in the dopaminergic system, the DAT controlling

both the duration of extracellular dopamine signals and regulating presynaptic dopa-

mine homeostasis (Jones et al., 1998).

Importantly, animal studies indicate differential functional localization of the

COMT and DAT proteins. The COMT enzyme plays a particular role in modulating

dopamine in the PFC, where DAT1 expression is sparse (Karoum et al., 1994;

Matsumoto et al., 2003b). COMT is expressed more abundantly in cortical neurons

than in the striatum (Matsumoto et al., 2003a), but it is unclear to what extent COMT
modulates catecholamine function outside the cortex. Recent studies in COMT

knockout mice suggest that COMT has little if any role in striatal dopamine levels

(Yavich et al., 2007). In contrast, animal research and human postmortem studies

indicate that theDAT1 is expressed abundantly in midbrain, striatum, and hippocam-

pus but sparsely in the PFC (Schott et al., 2006; Sesack et al., 1998).

In parallel with the fundamental fMRI results concerning PE mentioned before,

fMRI studies in healthy young subjects have documented that distinct reward

anticipation- and outcome-processing phases are associated with differential patterns

of specific midbrain dopaminergic postsynaptic targets (Dreher et al., 2006; Knutson

et al., 2003; O’Doherty et al., 2002). Specifically, anticipation of reward robustly

activates foci in the ventral striatum (Knutson et al., 2003; O’Doherty et al.,

2002), particularly during anticipation of rewards with maximal uncertainty (i.e., re-

ward probability¼0.5) (Dreher et al., 2006), while rewarded outcomes activate the

lateral and orbital parts of the PFC (Dreher et al., 2006; Knutson et al., 2003). Despite

the direct involvement of the COMT and DAT proteins in dopamine transmission,

the influences of COMT and DAT1 functional polymorphisms on distinct compo-

nents of the reward system have not been as systematically explored as have been

the domains of working and episodic memory (Bertolino et al., 2006; Caldu

et al., 2007; Schott et al., 2006).

Although there are clear individual genetic differences regarding susceptibility to

and manifestation of these neuropsychopathologies, the influence of genetic predis-

positions and variations on activation of the human reward system remains poorly

understood. Investigating the effects of interindividual differences in dopamine sig-

naling on the response of the reward system is thus an important research question

because these differences may contribute to heritable personality traits in the general

population and to neuropsychiatric conditions involving abnormalities in catechol-

amine neurotransmission, such as substance abuse, mood disorders, obsessive com-

pulsive disorder, attention deficit hyperactivity disorder, and schizophrenia. Using

event-related fMRI and a recently developed reward paradigm, we directly investi-

gated the relationship between COMT and DAT1 functional polymorphisms and the

response of the reward system during anticipation of uncertain rewards and, at the

time of reward delivery, bridging the gap between basic molecular genetics, funda-

mental electrophysiological findings, and functional neuroimaging in humans

(Dreher et al., 2009). The results revealed a main effect of COMT genotype in the

ventral striatum and lateral PFC during reward anticipation, and in the orbitofrontal

cortex at the time of reward delivery, met/met individuals exhibiting the highest
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activation (Fig. 8). The main effect of COMT genotype both in the ventral striatum

and lateral PFC is consistent with the hypothesis that dopamine regulates exploration

both through the PFC and basal ganglia (Frank et al., 2007; Humphries et al., 2012).
Variation in dopamine genes influences responsivity of the human reward
system
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(A) Relationships between the effects of genetic variations and reward processing. Influence

of the polymorphisms of the catecholamine-O-methyltransferase (COMT) (valine/valine;

valine/methionine; methionine/methionine) and the Dopamine Transporter (9/9 & 9/10;

10/10) on the reward system. (B) Left: Main effect of COMT and DAT genotypes during

anticipation of reward with maximal uncertainty. Negative relationship was observed between

COMT val allele dosage (0_met/met, 1_val/met, or 2_val/val) and BOLD response in the

ventral striatum, left superior PFC, and dorsolateral PFC during anticipation of reward with

maximal uncertainty. More robust BOLD response was observed in 9-repeat carriers

(including DAT1 9-repeat and 9/10) compared to 10-repeat individuals during reward

anticipation in the bilateral ventral striatum. Right: Main effect of COMT andDAT genotypes at

the time of reward delivery. Negative relationship between COMT val allele dosage and

orbitofrontal cortex activation at the time of reward delivery. Higher lateral prefrontal BOLD

signal was observed in DAT1 9-repeat allele dosage compared to 10-repeat carriers at the

time of reward delivery.

Figure adapted from Dreher et al. (2009) with permission.
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The main effect ofDAT1 genotype was seen in robust BOLD response differences

in the caudate nucleus and ventral striatum during reward anticipation, and in the lat-

eral PFC and midbrain at the time of reward delivery, with carriers of the DAT1
9-repeat allele showing the highest activity. Moreover, an interaction between the

COMT and DAT1 genes was found in the ventral striatum and lateral PFC during re-

ward anticipation and in the lateral prefrontal and orbitofrontal cortices as well as in the

midbrain at the time of reward delivery, with carriers of the DAT1 9-repeat allele and
COMT met/met allele exhibiting the highest activation, presumably reflecting

functional change consequent to higher synaptic dopamine availability.

One important insight provided by our data is a clear demonstration of interaction

between theDAT1 and COMT genes that control a complex phenotype (activation of

the reward system). This interaction likely reflects differences in dopaminergic level

due to the combined effect of the COMT val/val and DAT1 10/10 alleles on elimi-

nation of dopamine in the fronto-striatal system. Interestingly, the effects on the

BOLD signal of this presumed low dopamine level in val/val and 10-repeat alleles’

carriers differ both according to brain regions and task phases.

These results indicate that genetically influenced variations in dopamine transmis-

sion modulate the response of brain regions involved in anticipation and reception of

rewards and suggest that these responses may contribute to individual differences in

reward-seeking behavior and in predisposition to neuropsychiatric disorders.

A recent study used a guessing task to investigate how individual variation in

COMT and DAT1 genes influences reward processing (Yacubian et al., 2007). In ac-
cordance with our results, this study reported that, during reward anticipation, the

lateral PFC and the ventral striatum activities were COMT genotype-dependent: sub-

jects homozygous for the met allele showed higher responses in these brain regions

compared with volunteers homozygous for the val allele. This effect was observed

when averaging all probabilities and magnitudes against baseline, but no main effect

ofCOMT genotype was observed on ventral striatal sensitivity to reward uncertainty.
Moreover, no main effect of DAT1 genotype was reported on striatal activity during
reward anticipation, despite the well-established abundancy of DAT in the striatum.

A gene–gene interaction between COMT and DAT1 was observed in the ventral stri-
atum when sorting genotypes frommet/metDAT1 10-repeat allele to val/val 9-repeat
allele, interpreted as consistent with the notion that basal dopaminergic tone, regu-

lated by COMT, interacts with phasic dopamine release, regulated by the DAT. It is
difficult to directly compare our findings to these results because COMT and DAT1
genotypes may both directly influence distinct components of the human reward sys-

tem (COMT modulating the dorsolateral PFC and DAT the striatum) and differen-

tially affect their neurofunctional balance in a task-dependent manner. Finally, since

this previous study did not report effects of genotype on fMRI results at the time of

reward delivery, it remains unclear whether distinct phases of this guessing task

induce differential brain activity dependent upon COMT and DAT1 polymorphisms.

It should be noted that our fMRI results on COMT/DAT genotypes cannot estab-

lish the neurophysiological mechanisms underlying the relationship between dopa-

mine release and BOLD signal increase (Knutson and Gibbs, 2007). However, our
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study directly links genotype-dependent synaptic dopamine availability with BOLD

signal change in humans and suggests that higher BOLD signal at prefronto-striatal

sites is associated with greater dopamine synaptic availability (i.e., lower dopamine

elimination), in agreement with recent studies observing that (a) in young adults

there is a tight coupling between increased midbrain dopamine synthesis and

reward-related increased BOLD signal in the PFC both during reward anticipation

and at the time of reward delivery (Dreher et al., 2008) and (b) in animals injection

of dopamine-releasing agents increases BOLD signal in mesolimbic regions with a

time course that parallels the changes observed by microdialysis measurements of

striatal dopamine release (Chen et al., 1997).
9 CONCLUSIONS
In this chapter, I have described neuroimaging evidence of computational factors af-

fecting valuation and decision-making signals. The integrity of the neural structures

computing these value signals are crucial for efficient decision making and for pro-

cessing of reward information. A better knowledge of the neural basis of value sig-

nals, PE, and uncertainty signals is likely to advance our understanding of the impact

that different types of neuropathologies have on reward and decision making. Clin-

ical areas of research in which the current knowledge on value-based decision mak-

ing can be applied concern a variety of neuropathologies, such as schizophrenia,

Parkinson’s disease, pathological gambling, or drug addiction.
Acknowledgments
J.-C. D. was supported by the ANR, LABEX, the Fyssen foundation, the PMU, and

the “Fondation pour la Recherche Médicale.” I thank Dr. Guillaume Sescousse,
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