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‘Theory of mind’ (ToM) is classically
investigated with ‘static’ inference
tasks, which miss the dynamic na-
ture of social interactions. In a re-
cent article, Buergi, Aydogan, and
colleagues combined computa-
tional modeling and neuroimaging
to study the adaptive nature of
mentalization (i.e., the ability to
infer the continuous change of
others’ thoughts and intentions).

Representing other people’s thoughts,
feelings, intentions, what neuroscientists
call mentalization or ToM, is central to so-
cial cognition. Whether mentalization is
shared with nonhuman primates, how it
develops in children, and whether large lan-
guage models (LLMs) have ToM are topics
of active debate [1-5]. Characterizing this
capacity at the computational level is cru-
cial to advancing these discussions. Yet,
while decades of research have examined
the neural bases of ToM, most paradigms
have treated it as a static skill, often using
‘false belief’ tasks. By contrast, successful
real-world interactions require continuous
and flexible adaptation (i.e., adjusting
one’s inferences about others’ reasoning
as their strategies evolve).

In a recent paper, Buergi, Aydogan, et al.
address this gap with the Cognitive
Hierarchy Assessment (CHASE) model,
a Bayesian approach that formalizes
trial-by-trial updating of beliefs about an
opponent’s sophistication during repeated
Rock—Paper-Scissors (RPS) games [6].
CHASE outperformed alternative models,

capturing how individuals (N >500)
adapt their recursive reasoning (called
‘level-k thinking’) to opponents of varying
sophistication.

In an fMRI subset of participants (N = 50),
belief updates derived from CHASE
were associated with activity in the
temporoparietal junction (TPJ), dorsomedial
prefrontal cortex (dMPFC), anterior insula,
and dorsolateral prefrontal cortex, which
are core nodes of the ‘social brain’. Cru-
cially, multivariate decoding demon-
strated that these neural patterns could
predict the extent of adaptive updating
both across individuals and in out-of-
sample data. This finding establishes a
distributed ‘neural fingerprint’ of adaptive
mentalization, which was replicated in an
independent, more demographically di-
verse cohort.

This work advances the field in three key
ways. First, it reframes mentalization as a
dynamic Bayesian inference process,
aligning with recent decision neuroscience
efforts that emphasize latent belief updating
rather than static mentalization strategies
[7]. Second, it reveals that TPJ activity,
long associated with ToM, encodes not
only belief attribution, but also the dynamic
adaptation of one’s mentalization depth to
others’ changing strategy. Third, it provides
a robust neural marker with predictive valid-
ity, offering potential translational utility for
assessing individual differences and clinical
impairments in social cognition.

The finding that dynamic adaptation is
encoded by the TPJ resonates with other
recent computational accounts of social
interactions. For example, when the nature
of the cooperative or competitive interac-
tions is not explicitly cued, a mixture of in-
fluence learning models describes how
the brain dynamically arbitrates between
cooperative and competitive intentions
based on their relative reliability [7]. In this
latter study, right TPJ engagement was
also observed during such adaptation of
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one’s behavior to the changing intentions
of others. These results suggest that TPJ
involvement in ToM reflects an even more
general adaptive social inference process,
whether adjusting one’s mentalization
depth to the opponent’s strategy or
adapting to others’ changing intentions.

The authors’ emphasis on predictive valid-
ity is particularly valuable. Using multivari-
ate pattern analysis, both the levels of
strategic sophistication and the model-
inferred belief update could be decoded
and predicted out-of-sample from distrib-
uted neural activity across the whole
brain, but less so from the ‘social brain’.
This raises intriguing questions about the
localization and specificity of adaptive
mentalization signals. Thus, this meticu-
lous demonstration lays a solid foundation
for understanding the neurocomputational
mechanisms that enable humans to flexi-
bly adjust their mentalizing strategies in
dynamic social contexts.

The RPS game provides an elegant
model of adaptive mentalization. As a
nontransitive game, where no single
strategy dominates (rock beats scissors,
scissors beat paper, and paper beats
rock), it lacks a pure evolutionarily stable
strategy (ESS), since any fixed choice
can be exploited (Figure 1). Instead, the
game has a mixed ESS, in which each
option is chosen with equal probability.
When players randomize their choices
equally, no alternative strategy performs
better on average. However, in practice,
during human-human RPS games, peo-
ple often deviate from this equilibrium,
producing cyclic dynamics in which the
frequency of one action rises and falls in
turn with others [8]. For example, people
might collectively move from playing more
rock to more paper to more scissors,
again and again.

However, in the current fMRI experiment,
participants were not playing with other
humans but with three bots with fixed
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Figure 1. Schematic of the Rock—Paper-Scissors (RPS) game and experimental design. (A) () The
payoff matrix represents wins by 1, ties by 0, and losses by —1. (i) The probability simplex diagram for the RPS
game, in which each corner corresponds to playing one pure action (Rock, Paper, or Scissors), the center
point (blue dot) is the mixed Nash equilibrium (MNE), where each action is played with probability 1/3. Each
set of contour lines is the expected payoff Ua(action) for Player A when she plays that pure action against an
opponent mixing at the point in the simplex. (B) In several behavioral versions of the RPS game, participants
(N = 456) played against human opponents, and their behavior was best explained by the Cognitive Hierarchy
Assessment (CHASE) model across a wide range of game specifications. (C) In the scanner, participants (N =
50) played against three different artificial opponents based on the CHASE model with 0, 1, or 2 steps of

reasoning. (A-C) generated with the help of ChatGPT.

levels of reasoning based on a simplified
version of the CHASE model. This fMRI
design controlled the policies of the bots
and circumvented the tendency toward
cyclic patterns previously observed in re-
peated human-human RPS games [8].
Yet, a limitation of this fMRI study is that
the bots may have led participants to be-
have in a particular way. With repeated tri-
als, two interacting humans could become
sufficiently sophisticated to get close to
the Nash equilibrium (i.e., the mixed ESS)
during the final periods of the experiment,
while the bots do not have this ability. Al-
though this does not challenge the main
conclusions of the authors, it questions the
extent to which the behavior and brain ac-
tivity identified in the current study would
emerge during genuine human-human in-
teractions, entering a cyclical pattern.

Future studies should test whether the
identified neural computations generalize
to group interactions. Mentalization in

groups may rely on analogous mecha-
nisms, such as simulating the average
group member’s mind and making predic-
tions of others’ decisions while also simulat-
ing the effects of one’s own actions on the
dynamics of the group [9]. Moreover, de-
spite its strengths, the RPS may not capture
the full complexity of human strategic rea-
soning. Developing other models of adap-
tive mentalization that account for more
complex repeated strategic games will be
useful to better characterize the neural
mechanisms engaged in adaptive learning
and hierarchical reasoning. For example, a
recent model of adaptive mentalization
used the 11-20 money request game to
determine the neural computations underly-
ing these processes [10]. This hybrid model
includes three different learning processes:
adaptive learning; simulated adaptive learn-
ing (i.e., simulating adaptive learning from
the perspective of the opponent); and so-
phisticated learning (which is similar to the
belief updating component in the CHASE
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model). It more accurately explains
dmPFC activity compared with pure adap-
tive learning models. Moreover, it reveals a
prediction error signal for the sophisticated
learning process that engages the dorsolat-
eral prefrontal cortex.

Overall, this study marks a milestone in the
quest to uncover the neurocomputational
bases of ToM. By integrating formal models
of adaptive mentalization with neural signa-
tures, Buergi, Aydogan et al. capture the
essence of human social intelligence: the
capacity to flexibly model, predict, and
adapt to the changing minds of others.
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