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SUMMARY

Humans and other primates have evolved the ability
to represent their status in the group’s social hierar-
chy, which is essential for avoiding harm and access-
ing resources. Yet it remains unclear how the human
brain learns dominance status and adjusts behavior
accordingly during dynamic social interactions.
Here we address this issue with a combination of
fMRI and transcranial direct current stimulation
(tDCS). In a first fMRI experiment, participants
learned an implicit dominance hierarchy while play-
ing a competitive game against three opponents of
different skills. Neural activity in the rostromedial
PFC (rmPFC) dynamically tracked and updated the
dominance status of the opponents, whereas the
ventromedial PFC and ventral striatum reacted spe-
cifically to competitive victories and defeats. In a
second experiment, we applied anodal tDCS over
the rmPFC to enhance neural excitability while
subjects performed a similar competitive task. The
stimulation enhanced the relative weight of victories
over defeats in learning social dominance relation-
ships and exacerbated the influence of one’s own
dominance over competitive strategies. Importantly,
these tDCS effects were specific to trials in which
subjects learned about dominance relationships, as
they were not present for control choices associated
with monetary incentives but no competitive feed-
back. Taken together, our findings elucidate the
role of rmPFC computations in dominance learning
and unravel a fundamental mechanism that governs
the emergence and maintenance of social domi-
nance relationships in humans.

INTRODUCTION

Social dominance hierarchies are ubiquitous in the animal

kingdom and have a clear evolutionary significance, as they
spontaneously emerge from competition for energetic resources

and sexual partners [1, 2]. Some authors have thus argued for the

existence of a human ‘‘dominance behavioral system’’ [3, 4] that

may largely determine inter-individual differences in social

behavior [5–7]. Social dominance refers to situations in which

an ‘‘individual controls or dictates others’ behavior, primarily in

competitive situations’’ [8]. The concept is most frequently

applied to learned relationships that are shaped by a history of

victories and defeats within dyads of individuals [1], and a domi-

nance relationship is generally considered as ‘‘established’’

when one individual reproducibly tries to avoid competitive

encounters with another individual [9].

Epidemiological studies support the hypothesis [10] that many

mental disorders such as addiction, anxiety, and depression [2,

11, 12]may result from the influence of dominance hierarchies on

the brain circuitry. Understanding the brain processes underlying

our ability to track dominance relationships may therefore be

crucial for understanding inter-individual variability in social

cognition [3] and to develop new therapeutic alternatives for

several neuropsychiatric diseases [12].

In the past, human social dominance has been mostly studied

using pre-established ranks depicted by perceptual cues [5, 13],

thereby sidestepping the issue that social dominance is usually

dynamically changing and needs to be learned. Numerous

cortical and subcortical areas have been involved in social hier-

archy processing [14], but it is unclear whether these brain struc-

tures indeed causally influence dominance-related behaviors

and how their contributions in this respect differ. Moreover,

most existing studies of social competition have used monetary

incentives to energize competition, hence resulting in uncer-

tainty about whether learning-related signals represent social

dominance hierarchies or the processing of monetary reward

(e.g., [15, 16]). Nonetheless, substantial evidence indicates that

the rostromedial prefrontal cortex (rmPFC) is a key candidate

for learning dominance relationships by experiencing victories

and defeats during direct social competition. Indeed, this brain

region has been found to participate in social learning [17], be

engaged by various types of explicit judgments about others’

resources, expertise, height, or intelligence [16, 18, 19], and be

linked with cognitive functions influenced by dominance repre-

sentations [20] such as imputing intentions and assessing the in-

fluence of others [17, 19, 21, 22]. In humans, the rmPFCmay thus
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Figure 1. Experimental Procedures

(A) Time course of the fMRI experiment. During 15 trials of a ‘‘mini-block,’’ subjects played against (or with) the same player in the competitive (or control) situation.

The competitive task required subjects to evaluate a series of 46 stationary arrows, indicating in which direction the majority of these arrows pointed (left or right).

The task was performed against one of three opponents who were implicitly associated with three frequencies of winning and losing. In order to succeed in the

competition, subjects were instructed to answer accurately and faster than their opponents. The association between faces and winning/losing frequency was

counterbalanced across subjects. In the control task, uninformative horizontal bars were displayed on the screen and joint successes/failures occurred when

subjects responded with the same/opposite button as the other player.

(B) Time course of the tDCS experiment. Subjects performed a similar perceptual task but, in this experiment, opponents were marked by visual symbols and

artificial names rather than a face photograph. Subjects had to choose from two alternatives of which opponent to play against (three opponents per block) in two

types of trials designed to distinguish dominance-oriented (spontaneous) and reward-oriented (control) choices. In half of the subjects, we stimulated over the

rmPFC for 30 min with the excitatory anodal electrode of the tDCS apparatus (magenta; the reference electrode on the vertex is in blue); in the sham group,

stimulation was interrupted after only 30 s.

See also Figure S1.
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mediate the interaction of high-level cognition with dynamical

dominance representations, hence complementing the role of

subcortical structures such as the amygdala and ventral striatum

in long-term social conditioning [23, 24].

Here we combined reinforcement learning (RL), neuroimag-

ing, and brain stimulation to demonstrate that rmPFC com-

putations implement the learning and monitoring of social

dominance relationships. We assumed that this process is

instantiated by integrating competitive feedback (i.e., victories

and defeats) into a flexible dominance-value representation

(i.e., social dominance status; SDS) that is used to guide deci-

sion making in competitive contexts. More precisely, our RL

algorithm updated an SDSi for each specific opponent i against

which the participant played, by comparing in each trial the

prior SDSi value with the observed outcome, resulting in a

competitive prediction error (cPE). In cognitive terms, the

SDSi thus represents the chances of prevailing over a specific

individual i. This neurocomputational architecture may thus

account for the fast, context-dependent adjustment of social

behaviors to the relevant dimension of the opponent’s skills

during social interactions. Besides assessing the role of the

rmPFC in social dominance learning, our design also al-

lowed us to identify the pattern of neural activity involved in

the affective appraisal of competitive outcomes, a process

most likely sculpted by a long-timescale experience with social

competition [4].
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In experiment 1, 28 participants underwent fMRI while they

completed a perceptual decision-making task framed as

measuring ‘‘cognitive efficiency’’ (Figure 1A; Experimental Pro-

cedures). A cover story described the experiment as an online

competitive game played in real time against three other individ-

uals. However, unbeknownst to the subjects, social victories and

defeats were controlled by the computer in order to elicit an

implicit skill-based hierarchy. To capture the dynamics of domi-

nance representations from trial to trial, we regressed blood-ox-

ygen-level-dependent (BOLD) activity on the time-resolved

estimates of SDSi and their associated cPEs. In a control con-

dition, subjects simply had to press the same button as a fourth

player. This condition allowed us to examine whether the

observed neural activity was specific to situations where the

subjects learned the social ranks rather than just tracking

the probability of positive and negative outcomes.

As expected from our hypothesis, experiment 1 showed that

the rmPFC robustly encoded SDSi and cPEs whereas the ventral

striatum and ventromedial prefrontal cortex (vmPFC) encoded

competitive outcomes in a learning-independent manner. Hav-

ing established this correlative evidence for the representation

of SDSi in the rmPFC, we applied anodal transcranial direct

current stimulation (tDCS) or a sham stimulation over the coordi-

nates that best encoded competitive prediction errors in our

fMRI data (Figures 3A and 3B) while participants completed a

similar competitive task (Figure 1B; Experimental Procedures).



Figure 2. Learning of Social Hierarchy

(A) In experiment 1 (fMRI), learning was demonstrated by two post-scan tests

in which subjects were incentivized to maximize their payoffs by using their

acquired knowledge about the social hierarchy (see also Figures S1A and

S1B).

(B) In experiment 2 (tDCS), the analysis of control choices showed that all

subjects learned to discriminate the opponents and chose to play less

frequently against the superior opponents.

(C) Results from the same analysis as in (B) for spontaneous choices. Direct

comparisons between spontaneous and control choices indicated that sub-

jects explored the dominance hierarchy more frequently when no incentives

were at stake but competitive feedback was delivered.

Shaded areas and errors bars represent SEM. n.s, not significant. *p < 0.05,

**p < 0.01, ***p < 0.001. See also Figure S4.
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This enabled us to assess the causal influence of rmPFC compu-

tations over decision making in competitive contexts. Indeed,

experiment 2 was similar to experiment 1, except that it required

the participants to choose in each trial with which opponents

they wanted to compete. In the majority of trials, termed ‘‘spon-

taneous,’’ no monetary rewards were associated with competi-

tive feedback. However, a minority of ‘‘control’’ trials involving

monetary incentives (but no competitive feedback) were also

included. We used these two types of trials to demonstrate

that tDCS over the rmPFC specifically alters dominance-

oriented rather than general reward-oriented decision making.

RESULTS

Behavioral Evidence for Social Dominance Learning
In experiment 1 (fMRI), we assessed learning success outside

the scanner after completion of the main competition task (see

the Supplemental Experimental Procedures; Figures S1A and

S1B). Subjects were well able to learn the ranks of the opponents

from competitive feedback in the main fMRI task (Figure 2A).

In experiment 2 (tDCS), learning of social ranks could be

directly estimated from the choices made in the control trials,

for which subjects had to maximize monetary payoffs through

rational selection of the weakest opponents [25] (Figure 2B).

Every subject selected more often the weaker opponent avail-

able in each pair (t(1,33) = 11.0, p < 0.001), which validated our

methodological approach and demonstrated that subjects

were able to infer rapidly the skills of their competitors in the

perceptual decision-making game. In the spontaneous trials of

experiment 2 (Figure 2C), a similar pattern was observed, with

subjects on average choosing more often to compete against

the weaker opponents (t(1,33) = 4.6, p < 0.001).

Importantly, experiencing defeats during the competitive

tasks led to clear-cut enhancements of perceptual perfor-

mances in the next trial, which presumably reflects the cognitive

engagement of our subjects and their willingness to win—or

reluctance to lose—in the competitive game. Reaction times

significantly decreased after a defeat, whereas accuracy re-

mained constant, and this phenomenon was of similar amplitude

in the two experiments (Figure S4). Extended analyses related

to the aforementioned effects are reported in [25].

Neural Correlates of Social Dominance Learning:
Experiment 1
To identify the brain regions engaged in the dynamical represen-

tation and the update of the SDSi by cPEs, we applied an RL

algorithm to the sequence of competitive choices and outcomes

delivered by the computer program (see the Experimental Pro-

cedures). We assigned a value of 1 to victories and a value of

0 to defeats, so that the SDSi variable tracked the anticipated

probability of winning against each opponent i (which is high

against inferior and low against superior opponents). We then

used a model-based fMRI approach to regress the trial-by-trial

variables derived from the algorithm on BOLD signals (general

linear model 1; GLM1).

We found that the rmPFC (Montreal Neurological Institute

[MNI] coordinates: [6, 59, 10]) was the only brain region that en-

coded both positive and negative cPEs at canonical statistical

thresholds (Figures 3A and 3B; Table S1; p < 0.05 cluster-level
Current Biology 26, 1–9, December 5, 2016 3



Figure 3. Encoding of Competitive Predic-

tion Errors in the rmPFC

(A) Statistical maps (p < 0.05 FWE, cluster-cor-

rected threshold p < 0.001) for positive competitive

prediction error (cPE) (green) and negative cPE

(red) overlapped in the rmPFC (yellow).

(B) The right bank of the medial rmPFC was the

only region to encode cPEs of both affective

valences.

(C) Percent signal changes from the conjunction

cluster shown in (B) showed that rmPFC activity

increased with the size of the cPE (green, positive;

red, negative; purple, non-competitive).

(D) An ROI analysis showed that the activity

changes observed in the rmPFC reflected both

the cPEs and the anticipated opponents’ social

dominance status (SDSi) (GLM3, light blue). It also

demonstrated that the rmPFC did not reflect

winning/losing per se, the identity of the opponent,

or interactions of these two factors (i.e., no signif-

icant contrast [win against superior/inferior] > [lose

against inferior/superior], dark gray; vice versa,

light gray). ***p < 0.001.

Error bars and shaded areas represent SEM. See

also Figure S5 and Table S1.
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corrected for multiple comparisons, initial height threshold p <

0.001). Re-estimating the hemodynamic responses separately

for three different intensities of cPE showed that rmPFC activity

encoded a ‘‘signed’’ prediction error (Figure 3C), with more pos-

itive signals in response to more positive cPEs (i.e., victories

against opponents currently predicted to be superior) and

more negative signals in response to more negative cPEs (i.e.,

defeats against opponents predicted to be inferior).

In order to ascertain that the rmPFC monitored dynamical

fluctuations in SDSi rather than overall performance or identity

of opponents, we ran two complementary analyses. First, a

new GLM of simple interactions between outcome valence

(i.e., win or loss) and opponent categories (i.e., superior, interme-

diate, or inferior) could not explain BOLD activity in the rmPFC

(Figure 3D; GLM2). Second, a new GLM that included outcome

valence, opponent category, and cPE still revealed a clear effect

for competitive prediction errors, although all of the variance

related to opponent category and outcome valence had already

been explained by the other two parametric regressions (Fig-

ure 3D; GLM3). The separate analysis of victory- and defeat-

related prediction errors showed that they were indeed both

represented in the rmPFC (Figure 3A, yellow) but also engaged

partly distinct neural networks. Negative cPEs were additionally

encoded in the posterior cingulate cortex (PCC; Figure 3A, red),

whereas positive cPEs also recruited a frontoparietal network,

the bilateral anterior insula, and a right medial temporal lobe

region (Figure 3A, green; Table S1).

Importantly, the rmPFC not only encoded cPEs during the

outcome phase but also the SDSi at the decision-making stage

(MNI coordinates: [48, 8, 25]; Figure 3D, SDS blue graph bar; re-

gion-of-interest (ROI) analysis within the cluster of Figure 3B:
4 Current Biology 26, 1–9, December 5, 2016
t(1,27) = 3.8, p < 0.001). A similar SDSi

representation was also found in the right

dorsolateral prefrontal cortex (Table S1).
This observation is consistent with the notion that the rmPFC

not only encodes competitive prediction errors but also antici-

pates the probabilities of victories and defeats during the choice

itself, a process needed to drive adaptive decision making in

socio-competitive contexts. Importantly, we found no evidence

for a significant encoding of non-competitive prediction errors

(ncPEs) (t(1,27) = 0.32, p = 0.75; Figures 3C and 3D), reaction

times, or accuracy in the rmPFC (Figures S5A–S5C). These con-

trol analyses excluded that the rmPFC merely monitored the fre-

quency of positive/negative outcomes and associated reward

prediction errors, or that perceptual performance mediated the

effects observed here. Moreover, the absence of correlation

between cPE and ncPE signals (r = 0.09, p = 0.63) further

suggested that the rmPFC (Figure 3B) did not encode a

domain-general reward prediction error signal but instead a

prediction error specific for competitive interactions.

Finally, we investigated the affective processing of victories

and defeats using a non-parametric approach (GLM2) to

compare the BOLD responses elicited by social feedback in

the intermediate competitive and non-competitive conditions

(maximally matched in terms of outcome frequencies and visual

stimulation). A whole-brain analysis revealed a significant inter-

action between task type (compete/coordinate) and outcome

valence (positive/negative) in the ventral striatum (Figure 4A),

ventromedial prefrontal cortex (Figure 4B), and, to a lesser

extent, amygdala (Figure 4C) and midbrain (Table S5). Com-

pared to control failures, social defeats de-activated more

the ventral striatum, amygdala, and midbrain. By contrast, the

vmPFC was the only region to respond with increased BOLD

signals when subjects experienced competitive victories, as

compared to control successes. Subsequent analyses revealed



Figure 4. Interaction between Positive versus Negative Outcomes

and Collaborative versus Competitive Games

Competition-specific outcome signals from the intermediate competitive

condition (50% victories) as compared to successes/failures from the non-

competitive condition (50% successes). The interaction contrast ‘‘competitive

victory and control failure > competitive defeat and control success’’ yielded

significant results (p < 0.05 FWE, cluster-corrected threshold p < 0.001) in the

(A) bilateral ventral striatum (MNI coordinates: [�15, 17, �2]), (B) vmPFC (MNI

coordinates: [�3, 47,�11]), and (C) bilateral amygdala (MNI coordinates: [�24,

�19, �17] and [21, �7, �26]; small-volume correction [SVC], 8 mm sphere)

and midbrain (MNI coordinates: [6, �13, �11]; SVC within the brainstem

mask). Graphs represent the percentages of signal change for competitive

victories (filled green bars) and defeats (filled red bars) in the competitive social

task. Gray and empty bars denote successes and failures in the control

condition, respectively. Error bars represent SEM. See also Table S2.
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a significant relationship between the personality trait of behav-

ioral inhibition [26] (BIS-BAS scales) and the striatal sensitivity to

competitive outcomes, suggesting that those BOLD signals

relate to the affective processing of social defeats (see Fig-

ure S5D). Moreover, the analysis of these general, prediction-in-

dependent affective responses to competitive outcomes yielded

no significant difference in the rmPFC (Table S2).
The Impact of rmPFC Electrical Stimulation on Social
Dominance Learning: Experiment 2
In the homologous task performed under tDCS or sham stim-

ulation (Figure 1B), we accounted for the dynamic and progres-

sive emergence of dominance representations throughout each

block by means of a reinforcement-learning scheme that

included a decision rule (softmax policy; Figures 5A and 5B; Sup-

plemental Experimental Procedures). Bayesian group compari-

son of alternative RL models (Figure S2; Table S3) provided

strong evidence for a dual-learning rate model that differentiated

the weights of victories and defeats in the update of the oppo-

nent-specific SDSi values (see also [25]). Interestingly, only the

bestmodel accounting for spontaneous choices ignored the (pri-

vate) information about response correctness, so that learning

was based only on the information jointly available to the partic-

ipant and his opponent. Such intersubjective consistency (or

symmetry) of SDSi values is crucial for a learned variable that

should be common to both members of a dyad because it in-

dexes the status of an inter-personal relationship. Moreover,

the degrees of learning asymmetry (i.e., learning rates for victory,

minus those for defeats) associated with each type of choice

were not correlated (r =�0.12, p = 0.51), which further confirmed

that SDS learning differed from reward-based learning in our

task. As expected, the analysis of inverse temperature parame-

ters also showed that choices were less stochastic when an

incentive was at stake as compared to spontaneous choices

(paired-sample t test: t(1,33) = 3.97, p < 0.001; Figure S3A),

but tDCS had no influence on this parameter (main effect:

F(1,29) = 0, p = 0.98; interaction with trial type: F(1,29) = 1.67,

p = 0.21).

In order to test our main hypothesis that the rmPFC regulates

social dominance learning, we investigated the effect of rmPFC

stimulation on the parameters that best accounted for choices in

spontaneous and control trials. More specifically, given that fMRI

analyses revealed that cPEs of positive and negative valence

were encoded in different directions (Figure 3C), we expected

that the unidirectional (excitatory) tDCS would enhance positive

cPEs but actually reduce negative cPEs. This is because anodal

tDCS is thought to enhance resting potentials of the stimulated

neurons, thereby facilitating the triggering of action potentials

by excitatory post-synaptic potentials but reducing the impact

of inhibitory post-synaptic potentials on neuronal firing (see

also [25]).

We first tested these predictions with a GLM that included

stimulation type (i.e., sham/tDCS) as a fixed, between-sub-

ject effect. Two within-subject factors were also included as

repeated measures: positive versus negative learning rates

and spontaneous versus control condition (GLM-A; Table S4).

A three-way interaction of stimulation condition, trial type, and

valence indicated that the effects of tDCS on spontaneous and

control choices differed significantly (F(1,29) = 6.96, p = 0.013).

Thus, we separated the analysis for each trial type. This analysis

showed that, in the spontaneous choices, electrical stimulation

strongly interacted with the learning weights associated with

victories and defeats in the spontaneous trials (Figure 5C, left;

Table S5; F(1,29) = 13.5, p < 0.001; GLM-B; Table S4). As pre-

dicted, this interaction showed that tDCS enhanced the weight

of victories and diminished the weight of defeats for the dynam-

ical representation of SDS. Gender did not affect learning rates
Current Biology 26, 1–9, December 5, 2016 5



Figure 5. Reinforcement-LearningModeling

and Effects of tDCS on Social Dominance

Learning

(A) Overview of the computational model. The

reinforcement-learning (RL) algorithm assumes

that decisions are taken probabilistically (softmax

policy) according to the social dominance status

attributed to each opponent i. Once the competi-

tion has occurred, the SDSi value of the selected

opponent is updated for the next trial, in proportion

to the prediction error elicited by the outcome

(cPE = outcome R � SDSi), multiplied by the

learning rate a.

(B) Observed choices (dots) and modeled choices

(lines) in the spontaneous trials (merged across

sham and tDCS groups for display purposes). Dark

blue, blue-green, and green lines represent the

probability of preferring the intermediate over the

inferior opponent, the intermediate over the su-

perior opponent, and the inferior over the superior

opponent, respectively.

(C) In spontaneous trials (left), learning rates

related to defeats and victories were balanced in

the sham group. However, anodal tDCS over the

rmPFC induced a significant imbalance in the

learning rates, with more weight placed on vic-

tories and less weight placed on defeats. This ef-

fect did not occur in control trials (right). **p < 0.01.

(D) Significant interaction between the averaged

SDS and stimulation group (black, tDCS; gray,

sham) in the proneness to select the weaker

opponent. Subjects under rmPFC tDCS alter-

nated between periods in which they challenged superior opponents despite increased frequency of defeats (low averaged SDS) and periods in which they

consistently challenged inferior opponents despite having already established their dominance (high averaged SDS).

Error bars represent SEM. See also Figures S2–S4 and Tables S3–S5.
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in the spontaneous trials and did not interact with the corre-

sponding tDCS effects (F(1,29) = 0.01, p = 0.92 and F(1,29) =

0.3, p = 0.87, respectively). Crucially, we observed no significant

influence of electrical stimulation over control choices that were

driven by the motivation to maximize monetary reward (Fig-

ure 5C, right; GLM-C; Table S4; stimulation condition by valence:

F(1,29) = 0.01, p = 0.9; main effect: F(1,29) = 0.01, p = 0.93). This

demonstrated that tDCS acted specifically on the choices that

had an impact on the emergence of dominance relationships.

Complementing this key finding, we observed that the degree

of learning asymmetry (corrected for tDCS effects) was corre-

lated with the internal locus of control (iLOC) scale across sub-

jects, so that subjects with a higher sense of control weighted

victories more and defeats less on average (r = 0.41, p =

0.016; Figure S3C). Interestingly, in the sham group, people

scoring low on the iLOC scale exhibited a marked over-weight-

ing of defeats as compared to victories, which was absent in

the tDCS group (Figure S3B). Yet it is important to stress that

the effect of tDCS on learning rates did not interact with this

personality scale.

Because tDCS induced an asymmetry in the learning rates, fa-

voring victory- over defeat-based learning in the spontaneous

trials, modeled SDSi values were logically higher in the tDCS

group (t(1, 32) = 2.77, p = 0.009). Therefore, we hypothesized

that rmPFC-stimulated subjects would be less affected by the

experience of subordination but also more prone to establish

their dominance repeatedly, despite having already experienced
6 Current Biology 26, 1–9, December 5, 2016
their dominance. To test this prediction without introducing

biases, we used the learning parameters estimated in control tri-

als and averaged the SDSi values (A-SDS) over all opponents i,

resulting in a global estimate of subjects’ own dominance on a

trial-by-trial basis (higher when subjects are on average more

dominant). Then, we investigated whether this averaged SDS

variable influenced behavior differently in the sham/tDCS

groups. In line with our expectations, the effect of A-SDS on

the propensity to select the weaker opponent interacted with

the stimulation condition (F(3,87) = 3.2, p = 0.029) (Figure 5D).

An effect of A-SDS was clearly observed in the tDCS group

(F(3,42) = 3.6, p = 0.02; linear trend: F(1,14) = 11.5, p = 0.004),

but not in the sham group (F(3,42) = 0.5, p = 0.66). The choices

of the subjects in the tDCS group were thus more influenced

by the representation of their own (averaged) dominance status

in the task, hence translating into a lower dependence of their

choices on the victories and defeats in the immediately preced-

ing trials (Figure S3D). Besides, the difference in selection of

weak opponents between different A-SDS levels (fourth minus

first quartile) correlated positively with the degree of asymmetry

in learning rates (r = 0.37, p = 0.03), confirming that this phenom-

enon derived from the effect of tDCS on learning rates.

DISCUSSION

We investigated the neural circuitry underlying the learning

of dominance asymmetries during social competition. Neural
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activity in the rmPFC correlated with competitive prediction er-

rors, a teaching signal necessary to learn dominance represen-

tations from social defeats and victories in the absence of

external incentives. More importantly, enhancing neural excit-

ability with anodal tDCS modulated the learning parameters

that governed the update of dominance representations and

enhanced the influence of participants’ dominance on competi-

tive choices, whereas perceptual performances and choices

driven by monetary incentives were unaffected. Taken together,

our findings demonstrate for the first time that the rmPFC is

causally involved in learning and monitoring social dominance,

a pivotal feature of our relationship with others.

The rmPFC activation reported here was located in Brodmann

area 10, one of the latest portions of the prefrontal cortex to

evolve in primates [27], which has been linkedwith cognitive pro-

cesses required to navigate complex social environments such

as mentalizing [28], forming first impressions about others [29],

and updating beliefs about others [17, 19, 30]. Recently, a num-

ber of neuroimaging studies showed that the rmPFC is more

specifically engaged by competitive contexts or comparative

judgments than collaborative contexts or non-comparative judg-

ments [15, 16, 31, 32]. Medial PFC lesions in humans can impair

correct attributions of dominance from the verbal description of

social relationships [33], and a recent study indicated that indi-

viduals scoring higher on a dominance personality scale per-

formed better in a social learning task known to rely on rmPFC

computations [34].

The peak coordinates of cPE encoding in our study lie exactly

at the boundary of two regions known to encode representations

relating oneself and others [28, 30]. This area is therefore ideally

located to represent an inter-personal variable integrating both

types of information. That tDCS increased the influence of an

ego-centered dominance variable (A-SDS) over participants’

choices is also consistent with studies showing that the sense

of control or ‘‘agency’’—a construct close to the dominance

concept [8]—also depends on rmPFC computations [35–37].

Supporting the idea that rmPFC activity is sensitive to the sense

of control in social context, the relative weights of victories and

defeats correlated with the iLOC scale [38] across subjects, as

though tDCS seemed to ‘‘re-balance’’ social dominance learning

in low-iLOC subjects (Figure S3B). Such a phenomenonmight be

of clinical interest because low iLOC scores have also been

linked to lower stress resilience [38] and to dysfunctional domi-

nant-subordinate relationships at work [39]. More particularly,

tDCS may help reduce the risk of aggressive disorders in some

of these subjects [40, 41].

Although our results strongly suggest that the rmPFC plays a

central and causal role in the emergence of social dominance

based on competitive interactions, neuroimaging studies have

also highlighted the importance of other brain regions in the

appraisal of social rank [42]. For example, the ventral striatum

is recruited in social tasks delivering feedback about one’s

own monetary payoff relative to that of another individual [5,

15, 16, 31]. The amygdala has also been highlighted as a key

structure for learning social hierarchies by observation [24] rather

than by direct competition (as in the current experiments).

Although we found no learning-related signals in the ventral

striatum or amygdala, these two regions differentiated social

victories and defeats, and an ROI analysis indicated that the
amplitude of defeat-related de-activations in the striatum

correlated positively with a behavioral inhibition scale [26] often

viewed as reflecting more subordinate personality profiles [4]

(Figure S5D). This correlation suggests that social experi-

ence may shape brain responses to competitive feedback on a

much longer timescale than a single fMRI session. Accordingly,

two studies showed that the ventral striatal responses to social

status cues depended on the subjective socio-economic status

[7] and culture of subjects [6]. Neural plasticity within the dopa-

minergic system may underlie this phenomenon, as animal

research showed that chronic dominance translates into higher

expression of pre-synaptic dopamine receptor type 2 (D2)

receptors [43] whereas chronic subordination involves enhanced

dopamine receptor type 1 (D1) activity in this subcortical

structure [23].

In conclusion, our fMRI-tDCS approach cross-validates the

key involvement of rmPFC activity in social dominance learning

and sheds light on the computational principles governing this

process, which is distinct from the establishment of behavioral

inhibition and avoidance in the course of long-term dominance

relationships (for additional discussion of these findings, see

[25]). Contributing to action selection in a flexible and context-

dependent way [44], the rmPFC might be necessary to assess

dominance relationships based on limited competitive feedback

and to decide rapidly whether one should adopt a dominant or

subordinate social role, depending on how social interactions

unfold in specific contexts. A better understanding of the inter-

play of subcortical and rmPFC computations might eventually

open the path to new therapeutic interventions tailored to reduce

dysfunctional imbalances in dominance-related behaviors as

seen, for example, in depression, psychopathy, social anxiety,

and pathological aggression [3].

EXPERIMENTAL PROCEDURES

For a full description of cover stories, experimental designs, model fitting,

model comparison, complementary tasks, and the exact procedures used

for fMRI and tDCS, please see the Supplemental Experimental Procedures.

All participants met the inclusion criteria (right-handedness, no history of

psychiatric or neurologic disorders, Caucasian ethnicity) and gave written,

informed consent.

Experiment 1: fMRI

Experimental Design: Overview

Twenty-eight men (mean age: 22 years; age range: 18–27 years) entered the

scanner and were trained on the perceptual decision-making task during

100 trials, which included (non-social) feedback about their accuracy. The

fMRI experiment itself was a social-competition task divided into two runs of

18 min each, followed by a passive viewing test and two post-tasks aiming

at assessing learning in themain task (Figure 1A). Participants were confronted

with three different opponents (plus one control player in the non-competitive

condition). Trials were organized into mini-blocks (four per condition) during

which participants played 15 trials in a row against/with the same player,

whose face was presented before starting the 15 trials and at each outcome.

The subjects were told that they interacted in real time with the other individ-

uals, and received the following instructions: ‘‘If both responses are correct,

the fastest player wins. If one player gives an incorrect response, the accurate

player wins. If both responses are incorrect, the slowest player wins. If one

player doesn’t respond, then he loses automatically.’’

Unbeknownst to the subjects, outcomes were covertly manipulated to

induce the three different competitive conditions (33%, 50%, or 66% of vic-

tories) or the control condition (50%of cooperative successes). This latter con-

dition was a simplified coordination game in which subjects viewed horizontal
Current Biology 26, 1–9, December 5, 2016 7
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lines instead of arrows and had to respond by pressing the left or right button

without any perceptual judgment. They were told that the trial would result in a

shared win or loss if both players responded in the same direction or opposite

directions, respectively.

Following the functional imaging session, we invited subjects to complete

two complementary tasks designed to evaluate the avoidance of dominant in-

dividuals and the ability to recall the implicit hierarchy learned during the fMRI

experiment (Figures S1A and S1B). The protocol was approved by the local

ethics committee (Comité de Protection des Personnes – Sud-Est 2, Lyon,

France).

fMRI Analyses: Overview

To capture the dynamics of the social learning process elicited by our implicit

hierarchy manipulation, we applied a Rescorla-Wagner rule (learning rate 0.1;

see also Figure 5A and Equation 1 below) to model the sequence of victories

and defeats associated with each competitive condition. This model-based

fMRI approach was used to probe the neural substrates of cPEs and SDSi

by regressing brain activity on the trial-by-trial variables derived from our RL

algorithm (GLM1). We focused this parametric analysis on positive and nega-

tive cPEs (at the outcome stage), their non-competitive counterparts (ncPE;

outcome stage), and the momentary dominance status against the current

opponent (SDSi; perceptual decision stage).

A second GLM was set up to uncover brain activity that was categorically

associated with different types of outcomes (GLM2). This GLM included no

parametric regressors, and fractionated competitive outcomes into six regres-

sors (i.e., victories and defeats against superior, intermediate, and inferior op-

ponents). A third GLM similar to GLM1was used to ascertain that the encoding

of prediction errors was not confounded by baseline effects or opponent

identities (GLM3). In this model, competitive outcomes were modeled using

a single categorical regressor to which three parametric regressors were

added in the following order: opponent category (superior, intermediate, or

inferior), outcome valence (victory or defeat), and cPE. The serial orthogonali-

zation performed by SPM8 (http://www.fil.ion.ucl.ac.uk/spm) ensured that

cPE effects could not be explained by the first two variables. So that confounds

in the interpretation of cPE signals could be avoided, reaction times were al-

ways added as a first parametric regressor when modeling the onset of the

perceptual stage.

Statistical analyses were performed using a conventional two-level random-

effects approach with SPM8 (http://www.fil.ion.ucl.ac.uk/spm). All GLMs

included regressors for motor responses, pauses between mini-blocks, as

well as for the six motion parameters estimated from the realignment step.

Statistical inference was performed at a standard threshold of p < 0.05, fam-

ily-wise error (FWE) cluster-level corrected for multiple comparisons, with an

initial cluster-forming threshold of p < 0.001.

Experiment 2: tDCS of the rmPFC while Learning Dominance

Relationships

Experimental Design

Thirty-four healthy subjects (mean age: 22.1 years; 17 males) were told they

would compete against each other anonymously. The protocol was approved

by the ethics committee of the Canton of Zurich. As in experiment 1, the exper-

iment began with 100 training trials with accuracy feedback. During the

competitive task, outcomes against all triplets of opponents were again

controlled covertly in order to reach 33%, 50%, and 66% of victories against

the subject, thereby creating an implicit social hierarchy composed of an

inferior, an intermediate, and a superior opponent.

In each block, subjects were told they would play against three new oppo-

nents (depicted by fractals and nicknames) randomly and anonymously cho-

sen among the other players in the room. Each block was composed of 48

‘‘spontaneous choices’’ in which there was no money at stake and in which

feedback (win, even, or lose) was given to the subjects. Additionally, three

‘‘control choices’’ without feedback had to be performed at the beginning of

each block and then after each series of 12 spontaneous choices. For those

trials only, we instructed subjects that 2 Swiss Francs (CHF) would be added

to the initial endowment of the winning player (40 CHF) and that the same

amount of money would be removed from the endowment of the losing

player. Time courses were the same as in the spontaneous trials, except

that non-informative feedback was delivered in order to avoid additional

learning effects. Finally, for all trial types, only two opponents were proposed
8 Current Biology 26, 1–9, December 5, 2016
at the choice stage; subjects were thus told that the opponent they would not

select would automatically compete against the third (undisplayed) player

engaged in the block.

Reinforcement-Learning Modeling

In order to capture the dynamic influence of victories and defeats on the

competitive choices of the participants and to estimate the learning rates

associated with the two stimulation regimes, we used an RL algorithm. This

assumed that the probability of choosing to defy one opponent i over another

opponent j depended on the relative difference in their social dominance

statuses SDSi and SDSj.

SDSiðt + 1Þ=SDSiðtÞ+a � ðR� SDSiðtÞÞ (Equation 1)

pðiÞ= expðb � SDSiÞ
expðb � SDSiÞ+ expðb � SDSjÞ (Equation 2)

Equation 1 determines how the social dominance status of the chosen

opponent i (SDSi) is updated according to the feedback received. R is

the ‘‘reward’’ collected in the ongoing trial, which was arbitrarily set to

0 for defeats, 0.5 for evens, and 1 for victories. This means that higher

competitive values in any given trial correspond to weaker opponents

(against whom the subject recently ‘‘harvested’’ victories), and vice versa.

Constrained between 0 and 1, the free parameter a represents the learning

rate of the model (high a implies high volatility in the representation of

values) and could differ for victories and defeats, hence offering the possi-

bility to learn asymmetrically. Equation 2 defines a stochastic decision rule

(softmax) that calculates the probability of choosing the opponent i given

the other available opponent j. The free parameter b is the inverse temper-

ature parameter, and dictates to what extent the decision is deterministic

relative to the values of the available options ðb ˛ RÞ. We tested six variants

of our reinforcement-learning scheme, testing for three degrees of self-per-

formance monitoring (no monitoring, accuracy, and accuracy and response

speed) as well as single- versus dual-learning rate applied to the update of

opponent’s values after victories and defeats. Alternative models were

compared using Bayesian group comparison (Figure S2). For each trial

type, only the model presenting the highest exceedance probability was

analyzed.
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Figure S1 (related to Figure 1). Complementary behavioral tasks. (A) Choice opponent task (measured after 
Experiment 1). Immediately after the fMRI session, subjects performed a modified version of the competition task 
in which they could select the opponent they wished to play against. After selection, they played the perceptual-
decision making game which included a monetary incentive of 40 cents in each of the 36 trials (no feedback was 
given in order to avoid further learning). (B) Social ‘certainty equivalence’ task (measured after Experiment 1). The 
recursive design of the certainty equivalence task (administered 1 hour after the main competitive task) allowed 
subjects to converge toward a ‘certainty equivalence’ point at which they had no preference between the two 
options displayed [S1]. The cash register on the left represented a sure amount of money which varied across 
trials. The face on the right depicts one of the opponents met in the competition task, coupled with a fixed amount 
of money. This money could be won with the probability equal to the frequency of winning against this opponent 
during the competition task, as learned during the main experiment. At the end of the task, one trial was randomly 
selected and played out, and the resulting money was added to subject’s endowment. Each of the different 
opponents was evaluated in a separate block of 7-12 trials, until indifference was reached (for details, see[1]). 
Once the indifference point was reached, the subjective probability of winning against the presented opponent 

was computed as: w    
  

 
, where CE was the certainty equivalent and V the value associated with the risky 

amount (i.e., the amount associated with the opponent, here 20€). (C) In Experiment 2, immediately after 30 
minutes of stimulation, a task was administered to verify that performance monitoring ability was not altered by 
tDCS stimulation. Subjects performed 80 perceptual decisions using the same stimuli as in the main competitive 
task and were asked to indicate whether they thought they had made an error after each response. In case of a 
correct response, they were also asked to guess their social rank on the basis of their reaction time (results of this 
experiment are reported in Table S8).  Additional analyses of the results associated with Figure 2A and S1A/BN are 
available at https://dx.doi.org/10.6084/m9.figshare.3811365.v2 
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Figure S2 (related to Figure 5). Group Bayesian model selection in the two types of trials (Experiment 2) (see also 
Table S6-7 and Supplemental Experimental Procedures). (A) Model comparison for spontaneous choices driven by 
social dominance representations. These choices indicated that a model with two learning rates for victories and 
defeats (top) was more likely, which updated dominance statuses after errors. Light and dark bars represent the 
estimated frequency of each model in the population, using either Free Energy or the Akaike Information Criterion 
as comparison metrics, respectively. (B) Model comparison for control choices driven by rational maximization of 
monetary pay-off indicated the most likely model that was the one with two learning rates for victories and 
defeats (top), which did not update dominance statuses after errors. (C) Same analysis performed by pooling 
models with one and two learning rates into 3 families characterized by variation in the dependence between 
performance monitoring and update. In the spontaneous condition, the models that updated dominance 
representation were the most adequate. (D) Oppositely, in the control condition, models that conditioned update 
on accurate responding in the perceptual task were the most adequate. (E) Differences in Akaike values between 
the competing models 4 and 5, showing the relative advantage of RL4 (lower AIC) on RL5 to explain spontaneous 
choices, and vice versa. (F) Prior distributions used for the Variational Bayesian inversion of the learning models 
(left, inverse temperatures; right, learning parameters), designed to approach as much as possible non-
informative, flat priors over the full range of plausible values. Additional discussion of the results associated with 
this figure is available at https://dx.doi.org/10.6084/m9.figshare.3811365.v2 
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Figure S3 (related to Figure 5). (A) Inverse temperature parameters driving choices in each trial type showed that 
incentives made subjects more deterministic in their decision in order to maximize monetary pay-offs. tDCS did not 
affect this parameter. (B) Decomposition of the tDCS effect in participants with respect to the internal Locus of 
Control personality trait (high iLOC, low iLOC, median split) showing that tDCS stimulation and iLOC influenced 
learning asymmetry in a similar and additive way. (C) Learning asymmetries adjusted for tDCS effect (i.e. z-scored 
in each group independently) were significantly correlated with iLOC scores across subjects (r=0.41, p=0.016). (D) 
The mutual information between current choice (3 categories: superior, intermediate, inferior) and immediately 
preceding outcomes (6 categories: victory or defeat against each opponent type) was lower in the tDCS group as 
compared to the sham group (the first trial following each triplet of control choices was not included in this 
analysis). This is because averaged SDS values fluctuated more slowly than those pertaining to opponent-specific dominance 
relationships did. Confirming our interpretation, a lower mutual information between choices and the preceding competitive 

outcome was observed in the tDCS as compared to the sham group. Mutual information was computed using the 
MIToolbox (https://github.com/Craigacp/MIToolbox) according to the formula:   

                     
      

         
  

                                                                  

 

where C represents the 3 possible choices, O represents the 6 possible opponent-specific outcomes, and        
represents the joint probability of a given combination of C and O. Error bars indicate s.e.m.  Additional discussion 
of the results associated with this figure is available at https://dx.doi.org/10.6084/m9.figshare.3811365.v2 
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Figure S4 (related to Figure 2). Perceptual decision-making performances in both experiments. (A) Z-scored 
reaction times indicated a clear modulation of reaction times by the opponents’ rank, with faster reaction times 
against better opponents in both studies (top panel). (B-C) Trial-to-trial fluctuations in reaction times and 
accuracies indicated that experiencing a defeat increased speed (B) but not accuracies (C) of perceptual decisions 
in the following trial (middle and bottom panels, respectively). Error bars and shaded areas represent s.e.m. 
Additional analyses related to this figure are available at https://dx.doi.org/10.6084/m9.figshare.3811365.v2 
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Figure S5 (related to Figure 3). Additional fMRI analyses (GLM1). (A) Statistical maps (cluster-forming threshold: 
p=0.001 unc.) for the correct>incorrect (in green) and incorrect>correct contrasts (in red) show the effect of 
response accuracy at the perceptual decision-making stage. This analysis revealed a classical error-monitoring 
network encompassing the anterior insula and the posterior dmPFC (incorrect>correct) as well as a classical 
valuation network encompassing the vmPFC and the lateral parts of the ventral striatum (correct>incorrect). 
Importantly, these accuracy-related activities did not overlap with learning-related rmPFC activities reported in 
Figure 3B (shown here in transparent blue). (B) ROI analyses in the rmPFC (transparent blue cluster; see also Figure 
3B) indicate that the rmPFC activity was insensitive to perceptual errors at the decision-making stage (p>0.25; 
paired t-test, dark and light purple) as well as at the outcome stage (red vs green and red vs orange: both p>0.25; 
paired t-tests). rmPFC activity was also uncorrelated with reaction times at the decision-making stage 
(independently of accuracy) and was unaffected by motor responses (blue). However, the analysis of cPE encoding 
following erroneous perceptual decisions (yellow) revealed a significant, albeit reduced, encoding of prediction 
errors (one sample t-test: t(1,27)=2.2; p<0.05). (C) A whole-brain analysis revealed positive correlations between 
reaction times and BOLD activities within the bilateral parietal cortex, the right posterior dlPFC and the anterior 
cingulate cortex (in purple). These effects are likely the result of increased perceptual efforts in trials showing 
longer reaction times (due, for example, to the central positioning of several incongruent arrows). Again, effects of 
reaction times did not overlap with the rmPFC cluster of interest. No significant correlations were observed for the 
reverse contrast (i.e. more activity associated with decreasing RT). (D) A regression analysis between BIS and BAS 
personality traits[S2,S3] with striatal BOLD responses to competitive outcomes (as defined from Figure 4A) reveal 
that defeat-induced deactivations correlated with the Behavioral Inhibition Scale (t=-2.68, p<0.05) but not with the 
Behavioral Activation Scale (t=0.76; p>0.45). Overall, the ventral striatum of more inhibited subjects is more 
sensitive to the victory>defeat contrast (t=3.76, p<0.01), contrary to the BAS scale (t=-1.41; p=0.17). Bars and 
shaded areas represent s.e.m. Additional discussion associated with the results reported Figure S5 is available at 
https://dx.doi.org/10.6084/m9.figshare.3811365.v2 
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Region BA side cluster FWE n voxels T Z X Y Z 

Competitive prediction errors 
(positive and negative; conjunction analysis) 

Outcome stage 

Superior Frontal Gyrus 
(rmPFC) 

10 R p<0.001 280 5.29 4.35 6 59 10 

Competitive prediction errors (positive only)  Outcome stage 

Insula / Putamen 47 R 0.014 73 5.59 4.52 30 20 -5 

Temporal Lobe posterior 21/22 R p<0.001 128 5.15 4.26 66 -43 -2 

Superior Frontal Gyrus 8/6 R 0.013 74 5.14 4.26 18 29 55 

Frontal Gyrus middle 9/8/46 R p<0.001 443 5.09 4.22 42 11 34 

Insula / Putamen* 13 L 0.089 46 4.74 4.01 -30 14 -2 

Superior Frontal Gyrus 
(rmPFC) 

9/10 R p<0.001 137 4.53 3.87 6 65 19 

Parietal Lobe inferior/lateral 40/4 R p<0.001 159 4.53 3.87 45 -58 49 

Competitive prediction errors (negative only)  Outcome stage 

Superior Frontal Gyrus 
(rmPFC) 

9/10 L/R 0,001 121 4.41 3.80 9 62 22 

Cingulate Gyrus posterior 31 L/R 0.002 108 4.25 3.69 -6 -64 22 

Social dominance status  Perceptual decision-making stage 

Precentral Gyrus 9 R 0.033 56 5.72 4.59 48 8 25 

Superior Frontal Gyrus* 
(rmPFC) 

10 R 0.12 39 5.35 4.38 21 50 31 

 

Table S1 (related to Figure 3). Brain regions encoding continuous learning-related variables derived from the 
reinforcement-learning algorithm. Cluster-forming threshold: p=0.001. Cluster-wise multiple comparisons 
threshold: p

FWE
=0.05. Asterisks (*) denote regions which did not pass the statistical threshold for multiple 

comparisons but which are of scientific interest in the context of the present study. 

 

 



 

Region BA side cluster FWE n voxels T Z X Y Z 

Insula | Orbital Gyrus Posterior 38/47 R 0.005 99 5.60 5.24 51 11 -14 

Amygdala* # R 0.21 37 5.16 4.86 21 -7 -26 

Precentral Gyrus 6 R 0.01 86 5.08 4.80 9 -22 58 

Caudate | Accumbens | Insula # L/R p<0.001 350 4.81 4.56 -15 17 -2 

Hippocampus /Amygdala* # L 0.11 48 4.52 4.32 -24 -19 -17 

SNc / VTA* # R 0.55 22 4.31 4.13 6 -13 -11 

Superior Frontal Gyrus 
vmPFC 

11/12 L p<0.001 166 3.99 3.85 -3 47 -11 

 

Table S2 (related to Figure 4). Brain regions were activity showed the categorical interaction [intermediate 
opponent win & control failure]>[intermediate lose & control success], as revealed by a 2-way flexible factorial 
model at the second level. Cluster-forming threshold p = 0.001. Cluster-wise multiple comparisons threshold: 
p

FWE
=0.05. Asterisks (*) denote regions which did not pass the statistical threshold for multiple comparisons but 

which are of scientific interest in the context of the present study. 

 

 

 

 

 

 



 

 

Table S3 (related to Figure 5). Model selection and parameters explaining spontaneous choices (top) and control 
choices (down). F = Free energy. AIC = Akaike information criterion. EP = exceedance probabilities.  α = learning 
rate. β = inverse temperature. ω = sensitivity to rapidity of responding. See also the “Computational model: 
estimation and comparison procedure” section for an exhaustive description of the models. 

 

 

 

 

 

 

 

 

 

 

 



 

 sham tDCS    

 mean SD mean SD p(stim) 

Age 21.76 2.22 22.53 2.58 0.40 

Subjective Social Status 6.24 1.60 6.65 1.37 0.39 

Self-Esteem 23.41 4.95 22.06 2.68 0.36 

Competitive Personality 31.12 5.30 29.29 4.51 0.31 

Cooperative Personality 22.82 4.61 24.06 2.79 0.31 

Perceived Stress 14.06 6.04 13.12 4.12 0.63 

BAS Drive 8.41 3.16 9.18 1.98 0.41 

BAS Fun 8.06 2.68 7.35 2.60 0.46 

BAS Reward 8.41 3.43 8.94 3.34 0.67 

BIS 15.65 2.21 15.76 2.11 0.95 

LOC Internal 1.06 4.16 -2.29 3.26 0.02 

LOC external 2.94 5.88 4.94 5.23 0.23 

LOC chance 4.18 5.77 1.12 4.34 0.10 

Mood-before 5.12 1.05 5.24 1.03 0.77 

Mood-after 5.18 1.07 5.29 0.99 0.75 

Positive emotions 5.18 0.95 5.29 1.31 0.79 

Negative emotions 3.82 1.55 3.29 1.31 0.29 

Perceptual accuracy - spontaneous 0.83 0.07 0.85 0.06 0.42 

Perceptual accuracy - control 0.86 0.08 0.86 0.06 0.74 

Perceptual RT – spontaneous trials 0.47 0.05 0.48 0.11 0.66 

Perceptual RT – control trials 0.46 0.05 0.46 0.10 0.90 

Error detection 0.92 0.05 0.93 0.05 0.91 

Self-performance sensitivity 0.28 0.18 0.30 0.19 0.84 

Self-ranking 3.85 1.09 3.76 0.85 0.90 

 
Table S4 (related to Figure 1 & 5). Demographic information  and performance in the perceptual task compared 
between the tDCS and sham groups. The last three rows correspond to measures derived from the performance 
monitoring post-test (see also Figure S1) administered immediately after the stimulation protocol: “error 
detection” refers to the percentage of correctly reported errors, “self-performance sensitivity” refers to the 
coefficient of correlation (Spearman) between reaction times and guessed social ranks, “self-ranking” refers to the 
average social ranks guessed by subjects (a lower value indicating more a favorable self-ranking). 

 

 

 

 

 

 

 



 

 SS (type III) ddl Mean squares F Sig. 

GLM-A (all trials) 

TrialType * Valence * ILOC .106 1 .106 2.590 .118 

TrialType * Valence * Gender .004 1 .004 .098 .756 

TrialType * Valence * Stimulation .285 1 .285 6.959 .013 

TrialType * Valence * Gender  *  Stimulation .001 1 .001 .017 .898 

GLM-B (spontaneous trials) 

Intercept
#
 7.723 1 7.723 63.679 .000 

Valence .104 1 .104 2.630 .116 

Valence * iLOC .231 1 .231 5.859 .022 

Valence * Gender .000 1 .000 .009 .924 

Valence * Stimulation .535 1 .535 13.5 <.001 

Valence * Gender  *  Stimulation .005 1 .005 .126 .725 

iLOC
 

.034 1 .034 .278 .602 

Gender .003 1 .003 .029 .867 

Stimulation .006 1 .006 .048 .828 

Gender * Stimulation .045 1 .045 .373 .546 

GLM-C (control trials) 

Intercept 4.035 1 4.035 93.942 .000 

Valence .001 1 .001 .020 .887 

Valence * iLOC .000 1 .000 .011 .917 

Valence * Gender .005 1 .005 .134 .717 

Valence * Stimulation .001 1 .001 .015 .903 

Valence * Gender  *  Stimulation .012 1 .012 .311 .581 

iLOC .027 1 .027 .640 .430 

Gender .009 1 .009 .204 .655 

Stimulation .000 1 .000 .009 .927 

Gender * Stimulation .005 1 .005 .108 .745 

 
Table S5 (related to Figure 5). GLM results with differential effects of tDCS stimulation on learning asymmetry as a 
function of trial type. GLM-A corresponds to the full model, which showed a significant 3-way interaction between 
trial type (spontaneous/control), learning rate valence (positive/negative) and stimulation condition (sham/tDCS). 
For GLM-A, effects are only reported down to the level where the 3-way interaction was split for further analysis. 
GLM-B corresponds to GLM-A restricted to the spontaneous trial types and shows a strongly significant interaction 
of stimulation condition with stimulation condition (see also Figure 5C).  GLM-C is the same as GLM-B for control 
trial type, showing no effect of stimulation condition in this situation. Internal Locus of Control was included as a 
covariate in all GLM due to a significantly different score in the two groups.  

 

 



 

SUPPLEMENTAL EXPERIMENTAL PROCEDURES 

Experiment 1: fMRI 

Participants 

 Twenty-eight young men were included in the analyses (mean age: 22; age range: 18-27) using 

the main mailing list addressed to the students of the University of Lyon. All participants met the 

inclusion criteria (right-handedness, no history of psychiatric or neurologic disorders, Caucasian 

ethnicity) and gave written, informed consent for a protocol approved by the local ethics committee 

(Comité de Protection des Personnes – Sud-Est 2, Lyon, France). 5 additional participants were scanned 

but not included in the study due to excessive motion in the scanner (3 subjects) or because they 

spontaneously expressed doubts regarding the cover story (2 subjects). 

Experimental design: full description 

All sessions started between 2 and 3 pm. The first hour was dedicated to instructions, initial 

training and contextualization. Then, subjects entered the scanner and performed a second training on 

the perceptual task of 100 trials (see below for detailed description) which included an accuracy 

feedback but no social manipulation. This allowed performance to reach a stable and controlled level 

before the beginning of the competition phase. Moreover, we used an implicit staircase procedure to 

ensure that the perceptual difficulty of the task would be homogenous across subjects (3:1 ratio 

corresponding to a desired rate of 80% of correct responses; overall performance during the 

competitive task: 78.2% +/- 5%). 

The fMRI experiment itself involved four conditions that were matched for visual stimulation 

and timing parameters. Three conditions were associated with the competitive context. In these types 

of trials, subjects had to perform better than their opponents in the perceptual task. This perceptual 



 

task required estimating as fast and accurately as possible the main direction indicated by a set of non-

moving 46 arrows pointing either to the left or to the right. Perceptual difficulty was constant and 

corresponded to the proportion of arrows pointing in the majority direction. The rules of the 

competitive game were explicitly defined as follow: “The fastest player wins if both responses are 

correct. The accurate player wins if the other gives an incorrect response. If one player doesn’t respond, 

then he loses automatically. If both responses are incorrect, the slowest player wins”. This latter rule 

was set to discourage fast-guessing responses. The fourth condition was dedicated to the social but non-

competitive control situation. In this type of trials, similar to a simplified coordination game, the subject 

viewed bars instead of arrows (no perceptual judgment) and had to respond by pressing the left or right 

button. They were told that the trial would result in shared win or loss if both players responded in the 

direction or opposition directions, respectively. Each condition comprised 60 trials (control, superior 

competitive, intermediate competitive, inferior competitive), resulting in a total of 240 trials for the 

whole experiment. Importantly, the association between the four faces and the four conditions was 

counterbalanced across subjects in order to avoid any bias due to visual stimulation when analyzing 

group results. 

 The experiment was divided in two fMRI runs of 18 minutes. These two runs were identical and 

comprised 8 blocks of 15 trials played sequentially against or with the same player in the competitive or 

control situations, respectively. Each block began with a 5 s yellow fixation cross followed by a 10 s 

screen presenting the picture of the other player as well as short instructions relating to the situation. 

Each trial proceeded as follow. A jittered white fixation cross (2.5 - 4.5 s, uniform distribution) initiated 

the trial. Then, the stimulus associated with the competitive or control situation (arrows or bars, 

respectively) was displayed for 350 ms within a grey disk, which subsequently remained alone on the 

screen for 650 ms; subjects were instructed to respond before this disk disappeared (all miss trials were 

removed from the analyses, on average, we observed 1.93 misses per subject). A second jittered fixation 



 

cross (2.5 - 4.5 s, uniform distribution) separated the competition phase and the outcome presentation. 

The latter lasted 2 s and presented one of the following messages “Won against:” or “Lost against:” 

(competitive situation), “Won with:” or “Lost with:” (control situation) on top of the other player’s face. 

Note that although participation in the study was compensated (70€ per subject), there was no 

monetary incentive associated with any events in this experiment, in order to avoid confounds when 

interpreting the meaning of BOLD signals elicited by social interactions and social outcomes in both 

situations. 

Cover story 

 A strong contextualization procedure was used to ensure genuine cognitive and emotional 

engagement in the task. This procedure was largely inspired by a previous study on a related topic [S3]. 

Although they were fully simulated by the computer, the four other players were presented as real 

participants playing simultaneously over the internet. During the preliminary inclusion visit, we took a 

picture of each subject in order to “allow other participants to view his face during the experiment” 

(target faces, counterbalanced across subjects, were in the same age range than our participants, that is, 

between 18 and 30). We also insisted on the extreme importance of punctuality for this kind of multi-

subject experiment. On the day of the experiment, participants had to certify that they did not recognize 

any of the four other participants’ faces. During scanner configuration, a fake webcam broadcast 

(showing the other participants being instructed by a second experimenter) was displayed next to some 

suggestive LINUX commands (e.g. “$ register participant 1 –namecode”). Finally, the subject had to wait 

approximately one minute in front of a ‘connection panel’ showing three other participants’ faces and 

the experimenter informed him that this was because the last participant connected late. Among the 28 

participants effectively included in the study, none spontaneously expressed doubts concerning the 

procedure. Although six subjects declared that they were not really surprised when the experimenter 



 

made the manipulation explicit (after the experiment was completed), those subjects reported that they 

had not been overly unsure about the cover story. Note that removing these subjects from the analysis 

did not change the results at the group level. 

Optimization of the experimental design 

 Sequences of outcomes were precomputed to match the desired frequencies of winning and 

losing against each opponent. In the competitive conditions, winning frequencies for the subject were 

set to 33% when playing against the superior opponent, 50% against the intermediate opponent and 

66% against the inferior opponent. In the control condition, winning frequencies were set to 50%, 

allowing unbiased, direct comparisons with the intermediate opponent from the competitive condition. 

Moreover, for each condition and subject, the sequence of winning and losing events was optimized in 

order to maximize statistical sensitivity to the win-lose contrast using homemade scripts derived from a 

validated toolbox [S4]. Moreover, this procedure normalized detection power across subjects, thus 

improving reliability of inter-individual variability analyses. Nonetheless, based on preliminary tests, we 

realized that it was necessary to attenuate performance-outcome independence in order to maintain 

believability. Indeed, enduring a defeat following an extremely fast correct response was perceived as 

very implausible by our pilot subjects. Therefore, we decided to replace on-line a precomputed defeat 

by a victory, if the subject produced a correct response with a RT below the 20th percentile of his own 

accurate RT distribution. In this case, the suppressed defeat was later reinstated when an inaccurate 

response occurred against the same opponent in a trial precomputed to be victorious (this affected less 

than 10% of the trials). This strategy was successful to achieve believability while keeping target 

frequencies of winning in the desired range. Effective frequencies of winning were:  37% +/- 6% for the 

superior, 51% +/- 3% for the intermediate, and 63% +/- 3% for the inferior opponent. 

fMRI acquisition 



 

 Imaging was conducted on a 1.5T Siemens Sonata scanner, using an eight-channel head coil. 

Twenty six interleaved slices tilted relative to the anterior commissure – posterior commissure line (20-

30°) were acquired per volume (field of view, 220 mm; matrix 64 x 64; voxel size, 3.4 x 3.4 x 4mm; 

interslice gap, 0.4 mm). Functional images were obtained using a gradient-echo echoplanar imaging 

(EPI) T2*-weighted sequence (TR, 2.5 s; TE, 60 ms; flip angle, 90°). To improve the local field 

homogeneity and hence minimize susceptibility artifacts in the orbitofrontal cortex, a manual shimming 

was performed and a map of the magnetic field was acquired to correct for residual inhomogeneity-

related distortion in the functional scans. Following the three fMRI runs, a high-resolution T1-weighted 

anatomical scan was acquired. 

fMRI data preprocessing 

 All preprocessing steps were conducted using SPM8. The first four volumes of each run were 

removed to allow for T1 equilibrium effects. For each subject, functional images were time-corrected, 

realigned, unwarped using the magnitude and phase images, and coregistered to the anatomical scan. 

The anatomical scan was then normalized to the MNI space using the ICBM152 template brain and the 

resulting transformation matrix was applied to the functional images. Finally, the normalized functional 

images were spatially smoothed with an 8 mm Gaussian kernel. 

fMRI analyses: full description 

 Statistical analyses of fMRI signals were performed using a conventional two-levels random-

effects approach with SPM8 (http:/www.fil.ion.ucl.ac.uk/spm). All general linear models (GLM) 

described below included the 6 motion parameters estimated from the realignment step, in order to 

covary out potential movement-related artifacts in the BOLD signal. All regressors of interest were 

convolved with the canonical hemodynamic response function (HRF) using a Dirac function for motor 

events and a boxcar lasting the duration of the visual stimulus associated with each regressors. All GLM 



 

models included a high-pass filter to remove low-frequency artifacts from the data (cut-off = 128 s) as 

well as a run-specific intercept. Temporal autocorrelation was modeled using an AR(1) process. For the 

computation of evoked responses (i.e. profiles of BOLD activity), we chose the well-validated and widely 

used rfxplot toolbox[S5]. BOLD signals were extracted from the cluster of interest (i.e., rmPFC activity as 

defined at Figure 3B) and were adjusted in each subject for block- and movement-related variances.  

In order to capture the dynamics of the social learning process elicited by our implicit hierarchy 

manipulation, we applied a Rescorla-Wagner rule (learning rate = 0.1; see Equation 1, below) to model 

the sequence of victories and defeats associated with each competitive condition, in each subject 

separately. This model-based fMRI approach was thus used to probe the neural substrates of 

competitive prediction errors (cPE) and anticipated opponents’ values (i.e. social dominance status, SDS) 

(GLM1). At the first-level, 3 categorical regressors modeled the decision-making phase (onset of the 

target arrows): control decisions, incorrect competitive decisions, correct competitive decisions. Four 

categorical regressors were dedicated to the outcome phase: competitive victories, competitive defeats, 

control outcomes, plus one regressor for outcomes which followed erroneous perceptual decisions in 

the competitive condition. Then, six parametric regressors were added to their corresponding 

categorical regressors in order to estimate brain activity correlating with the trial-by-trial variables 

derived from our RL algorithm. Positive, negative, and ‘post-error’ competitive prediction error values 

(cPE) were added as parametric modulators of victories, defeats and outcomes following an erroneous 

decision, respectively. In order to avoid confounds in the interpretation of cPE signals, RTs and trial by 

trial SDS values (i.e., expected chances of winning) derived from the RL algorithm were added as 

separate parametric modulators of the correct and incorrect perceptual-decisions regressors. Finally, 

control outcomes were parametrically modulated by a non-competitive prediction error term derived 

from the same algorithm used to describe learning in the competitive trials (ncPE). 



 

A second GLM was run to uncover competition-specific brain activities associated with outcome 

processing (GLM2) and to compare model-based results with a GLM not accounting for the ongoing 

learning process. This GLM fractionated competitive victories and defeats in 3 regressors each (i.e., 

against superior, intermediate and inferior opponents), while control successes and failures were 

modeled as 2 separate regressors, resulting in 8 categorical regressors for the outcome period. The 

decision phase was also modeled using three categorical regressors: one for correct perceptual 

decisions, one for incorrect perceptual decisions, and one for control decisions.  

A third GLM was used to confirm that the encoding of cPE was not confounded with block or 

opponent effect. This GLM3 was the similar to GLM1 except that victories and defeats were modeled as 

single outcome events, with 3 parametric regressors serially added to explain activities related to 

opponent category (superior, intermediate, inferior), outcome valence (positive, negative) and finally 

cPE. Due to the orthogonalization procedure of SPM, the cPE regressor could not explain any activity 

related to opponent category or outcome valence. Non-competitive outcomes were modeled as a single 

event modulated by prediction errors.  

All statistical maps were obtained with at a statistical threshold of p<0.05 FWE-corrected for 

multiple comparisons at the cluster level, with a cluster-forming threshold of p<0.001. For the display of 

effects within regions of interest (ROI), we extracted contrast estimates from the corresponding cluster 

(resulting from a threshold of p<0.001 unc.) and computed the mean estimates. The fMRI results from 

the competitive task were analyzed using 2 GLMs described below. Each GLM included the onset of 

motor responses, pauses between mini-blocks, and six un-convolved motions regressors as covariates of 

no interest. 

Model-based fMRI analysis 

The following Rescorla-Wagner rule was used : 



 

                                         (Equation 1) 

Where   is the learning rate of the algorithm,         is the momentary dominance of the 

subject against a given opponent i at the beginning of trial t, and      is the outcome of the competitive 

interaction, coded as 1 in case of victory and -1 in case of defeat. Because we collected no choice data in 

Experiment 1, we set the learning rate at the standard level 0.1 for all the reported results (learning 

rates of 0.05, 0.2 and 0.3 were also investigated and revealed very similar results). This procedure has 

recently been proved valid, as the exact value of learning rates used in model-based fMRI has very 

limited impact on final results [S6]. Note that on each trial,         represents the anticipated 

probability of winning against a given opponent i. Since SDSi values were updated for each opponent 

separately, they are higher against weaker opponents and lower against stronger opponents. In other 

words, they reflect the expected dominance of the subject over his/her opponents (the regressor was 

inverted when entered in the design matrix, so that the positive correlation, as displayed Figure 3D, 

indicates more BOLD activity when facing a momentarily dominant opponent). 

The competitive prediction error variable regressed against BOLD signals correspond to the 

following term:                   . For each trial, actual and anticipated outcomes are thus 

compared by the algorithm to generate a teaching signal (the cPE) used to update the social dominance 

status (SDS) momentarily associated with the opponent under consideration. In this computational 

scheme, with victories coded as R=1 and defeats coded as R=0, SDS values thus fluctuate around the 

true underlying chances of winning associated with each opponent. 

 

 

 



 

Experiment 2: tDCS 

Participants and variables controlled across experimental groups 

Thirty-nine subjects were recruited to participate in this experiment through the student mailing-list of 

the University of Zurich. The protocol was approved by the ethics committee of the Canton of Zurich.  

Testing was performed in groups of 9-11 participants in the behavioral room of the Laboratory for Social 

and Neural System research (SNS-Lab). In each of the 4 experimental sessions, subjects were randomly 

and evenly assigned to the tDCS or sham condition (4-6 tDCS subjects per condition and session). We 

used a double blind design where the subjects and the experimenters in charge of the instructions and 

electrode placement were unaware of the condition assignment. Five participants were excluded 

because they did not exhibit rational choices during the trials which included monetary incentives (i.e. 

their choices were not transitive). 

Among the 39 participants recruited in the study, five were excluded because they were not 

transitive in their competitive preferences during triplets of control trials interleaved with the trials of 

interest (for example, if they preferred A over B and B over C, they didn’t choose A over C more than 

50% of the time) and they did not select inferior opponent more often than superior opponent in this 

condition, suggesting that they were not engaged in the task and/or that they did not detect the 

presence of an implicit hierarchy.  

To control for potential confounds related to demographic and personality variables (see Table 

S8), all included participants (17 males, 17 females; mean age 22,1 +/- 2.4 STD) completed 

questionnaires measuring self-esteem[S7], perceived stress [S8], competition-cooperation strategy [S9], 

Behavioral Inhibition and Activation Scales [S2] (BIS-BAS), subjective social status and Locus of Control 

[S10]. A complementary task performed at the end of the experiment was also used to exclude that the 

effects of rmPFC stimulation on learning would be mediated by alteration of self-performance 



 

monitoring. We performed two-way ANOVAs with stimulation condition and gender as fixed effects to 

detect eventual differences between the four subgroups of participants for these cognitive, 

demographic and personality factors (see Table S4). This showed that the two stimulation groups were 

reasonably matched (p>0.15) with respect to any variables that may affect social learning and strategic 

reasoning under competitive settings, except for the chance and internal Locus of Control subscales 

(chance LOC, p=0.10; internal LOC, p=0.02; sham group higher on both subscale). Including these 

subscales as covariates did not affect statistical inferences concerning our main conclusions, but we 

chose to systematically include iLOC as a covariate due to its a priori relevance for social dominance and 

rmPFC computations (see Results and Discussion sections). 

Experimental design 

In the task used for the tDCS experiment, subjects were told that they would compete against 

each other anonymously during three similar blocks involving four players (the subject plus three 

opponents). Anonymity of social competition was primed by displaying a fractal image and a three-

syllable word (not a name) attached to each of the three opponents. The perceptual game used for 

social competition and hierarchy induction was the same as in the fMRI task (see above), except that 

arrows were not hidden after 350ms and that the total number of arrows was reduced to 25 (instead of 

46). As for fMRI, the experiment began with 100 training trials with accuracy feedback but no social 

manipulation or brain stimulation. Again, a staircase procedure enabled us to match perceptual 

difficulty across subjects (4:1 ratio corresponding to a desired rate of 85% of correct responses; overall 

performance during the competitive task: 84.2% +/- 6%). 

Unbeknownst to the subjects, all triplets of opponents were programmed in order to reach 33%, 

50% and 66% of victories against the subject, thereby creating an implicit social hierarchy composed of 

an inferior, an intermediate and a superior opponent (see next section). The three blocks of the task 



 

were identical except that the nicknames and the fractals depicting players were changed and subjects 

were told that they would play against three new opponents, randomly and anonymously picked among 

the other players in the room. Each block was composed of 48 spontaneous choices in which there was 

no money at stake and in which feedbacks (win, even, lose) were given to the subjects. Each trial 

proceeded as follow (Figure 1): fixation cross (1-3 s), display of the two opponents available for choice 

(self-paced), fixation cross (1-3 s), perceptual decision-making (1s), fixation cross (1-3 s), display of the 

outcome (winning/losing/even). Additionally, 3 ‘control choices’ without feedback had to be performed 

at the beginning of each block and after each series of 12 ‘spontaneous choices’ with feedback.  Subjects 

were then explicitly warned that 2 CHF would be added to the initial endowment of the winning player 

and that the same amount of money would be removed from the endowment of the losing player. 

Because we did not want learning to be affected by these incentivized trials, no immediate feedback 

was given but a (fake) summary of the extra-money won or lost was displayed at the end of each block. 

The time-course of these trials was strictly identical to the ‘spontaneous choices’ trials, except that no 

outcome was displayed. Finally, note that for all trial types, only 2 opponents were proposed at the 

choice stage. The subjects were told that the opponent they would not select would automatically 

compete against the third (undisplayed) player engaged in the block. 

 This design was used to disentangle social learning itself from competition- and status-related 

preferences. In the ‘spontaneous choices’ trials, subjects’ choices could thus be driven by the desire to 

challenge the strongest opponent or by any form of information-seeking behavior. In the ‘control 

choices’ trials, there was a strong incentive for the subjects to choose the weakest opponent according 

to what they actually learned, whereas competitive and hierarchical motivations over choices were 

minimized by the absence of feedback. 

 



 

Algorithm used to control competitive outcomes 

The algorithm generating these frequencies of winning computed, after each correct response, 

to which percentile the current RT belonged, relative to the cumulative distribution of reaction times 

until the current trial. The distribution of reaction times was initialized using the last 30 trials of the 

training period. The threshold percentile under which a victory was delivered was determined by the 

target percentage of victories against the considered opponent multiplied by two minus the current 

percentage of victories against this opponent, so that a lack of victorious outcomes translated into more 

lenient threshold while an excess translated into a more severe threshold:  

 

                 

 
 
 

 
 

                            
 

    
 

                              
                    

 

   

                

 
 
 

 
 

                              
 

   
 

                              
                    

 

  

                  

 
 
 

 
 
                                                

 
                    

 
                                

                 
 

  

 

Where             
    is the target frequency of winning against the opponent,             

  is 

the current frequency of winning against the opponent, and                  is the percentile of the RT 

relative to the cumulative probability distribution of the previous 30 trials (to accommodate fluctuation 

in performance across the experiment). This adaptive procedure was used to achieve good control over 



 

outcomes while maintaining high believability and ecological validity. When this procedure was not 

sufficient to maintain hierarchical differences within reasonable limits, victories or defeats could be 

‘forced’ irrespective of RT, provided that the subject gave a correct response or that the current RT 

percentile was superior to 10, respectively. Only 16,5% +/- 4% STD of the trials were adjusted in this 

latter way. 

Contextualization procedure 

 For the tDCS experiment, the social competition was a priori highly credible because the 

experiment was performed in the same behavioral room of the Laboratory for Social and Neural 

Systems by ten to twelve subjects simultaneously. The computer screens of the room were shielded in 

view from one another and the experimenter stayed continuously in the room, preventing subjects from 

communicating and watching the screen of others. The beginning and termination of each block were 

synchronized to enhance the feeling of real-time gaming. At the beginning of each experimental session, 

the experimenter collectively instructed subjects that they would compete against each other 

anonymously – during three similar blocks involving four players (the subject plus three opponents). In 

addition, he indicated that the competition would have to be anonymous in order to exclude confounds 

related to social perceptions. At the beginning of each block, the subjects were attributed a nickname 

(3-syllabs pseudo-word) and a fractal image, and were presented with the nicknames and fractals 

associated with other opponents. Finally, the experimenter explained that some subjects would have 

the possibility to choose against whom they would play while others would just wait to be selected, and 

that these ‘chooser’ or ‘non-chooser’ roles would be randomly attributed. Covertly, all subjects were 

attributed the chooser role. 

Transcranial direct current stimulation (tDCS) procedure 



 

 During the experiment, we applied tDCS over the rmPFC of participants using a commercially 

available multi-channel stimulator that allows stimulation of up to 16 participants with individually 

tailored stimulation protocols. Here, we applied anodal tDCS over the MNI coordinates [xyz=6, 59, 10] 

defined based on the fMRI experiment, using the peak coordinates of the results from the conjunction 

analysis for positive and negative competition errors, as defined in Figure 3B and Table S1. The electrode 

were placed on the scalp using the frameless stereotactic software Brainsight 2.0 and the T1-weighted 

anatomical scan of each participant, which enabled us to transform the standard MNI coordinates into 

individual scalp coordinates. The rmPFC was stimulated using a 5x5 cm (anodal) electrode allowing 

current to flow towards the 9x9 cm reference (cathodal) electrode placed on the vertex. The positioning 

and the large size of the reference electrode [S11] was used to circumvent influences on other cortical 

areas potentially relevant for executive control. In line with established procedure and safety 

recommendations, we stimulated with 1 mA current strength and used a 30 s ramping current increase 

to avoid tingling sensations caused by abrupt onset and offset of tDCS. In the tDCS group, stimulation 

lasted as long as the experimental session (never more than 30 minutes). In the sham group, we applied 

30 s of ramping stimulation so that subjects could feel the onset of the current, but the stimulation was 

then immediately decreased and the tDCS was turned off after 1 minute. This procedure was adopted in 

order to avoid metacognitive biases associated with the detection by the participant of his/her 

stimulation condition. Although participants in the tDCS condition rated significantly higher on the post-

test question “Did you felt the stimulation during the task?” (p=0.049, Mann-Whitney), it must be noted 

that answers were on average negative in both group (sham group: 1.81±0.55, tDCS group: 2.35±0.7; 

with ‘0’ corresponding to “Not at all”,  3 corresponding to ”Not sure”, and ‘7’ correspond to “Completely 

sure”). In addition, tDCS had no effect on self-reported mood state (from 0/”very negative” to 7/”very 

positive”) following the experiment (p=0.89 [t-test]) nor on the change between pre- and post-

experiment mood state (p=0.99 [repeated-measures ANOVA], means reported Table S4). In summary, 



 

the effect of tDCS on social learning could not be attributed to modulations of general emotional or 

metacognitive states during the experiment. 

Computational modeling: estimation and comparison procedures 

In order to capture the dynamic influence of victories and defeats on the competitive choices of the 

participants (Figure 2A) and to estimate the learning rates associated with the two stimulation regimes, 

we used a Rescorla-Wagner algorithm[S12] combined with a softmax decision policy (Equation 2) 

assuming that the probability of choosing to defy one opponent i over another opponent j depends on 

the relative difference in the social dominacen status associated with this opponent versus with the 

other opponent (both being presented simultaneously on the screen). 

                                            (Equation 2) 

     
           

                        
                      (Equation 3) 

Equation (2) is identical to Equation (1) defined above. It determines how the social dominance 

status of the chosen opponent (SDSi or SDSj) is updated according to the feedback received. R(t) is the 

‘reward’ collected in the ongoing trial: it was arbitrarily set to 0 for defeats, 0.5 for evens, and 1 for 

victories, so that higher competitive values in any given trial corresponds to weaker opponents (against 

who the subject recently “harvested” victories) and vice-versa. The free parameter α represents the 

learning rate of the model (high α imply high volatility in the representation of values) and was 

constrained between 0 and 1. 

Equation (3) defines a softmax function which is a stochastic decision rule that calculates the 

probability of choosing an option given the available alternative. The free parameter β is the inverse 

temperature parameter and dictates to which extent the decision is deterministic relative to the SDS 

values of available opponents i and j (a high absolute β values mean that choices are strongly driven by 



 

SDS values). Note that contrary to economic decision-making experiments, here β could be negative to 

account for a general preference towards stronger opponents. 

Because subjects’ performance could affect competitive outcomes, we elaborated a refined 

version of the Rescorla-Wagner rule which allowed prediction errors to be weighted by the performance 

of the subjects. 

                                                                     

(Equation 4,victory) 

                                                                            

(Equation 5, defeat) 

 Where   is the performance weighting parameter (higher   means higher determination of 

prediction errors by performances) and   is the normalized performance of the subject on the current 

trial, computed as: 

     
                       

                          
 (Equation 6) 

 As previously described in the subsection dedicated to the fMRI analysis, the competitive 

prediction error term (referred to as “cPE”) corresponds to the term        . 

In a preliminary step, we tested six variants of this reinforcement-learning scheme, to explained 

either spontaneous or control choices (Figure S2). Note that in both cases, the learning functions were 

only fed with the feedbacks delivered in the spontaneous condition, since no feedback was given in the 

control condition. These six models varied on two dimensions. First, three models used the same 

learning rate for victories and defeats (RL1, RL2, RL3), whereas the remaining models used separate 

learning rates for these different outcomes (RL4, RL5, RL6). Second, two models updated the values of 



 

the opponent even after incorrect answers in the perceptual game (RL1, RL4), two models did not 

update opponents’ value after incorrect answers (RL2, RL5) and the remaining models did not update 

after incorrect answer and included a performance-weighting parameter. The first dimension was used 

to determine whether social hierarchy learning is more likely driven by a single, symmetrical or a dual, 

asymmetrical learning process. The second dimension was used to address sensitivity to one’s own 

accuracy in the update of opponents’ value.  

Estimation of optimal parameters and goodness of fit were performed in each subject 

independently using the variational Bayes (VB) approach proposed by [S13] and implemented in a 

validated Matlab toolbox (VBA toolbox, available at: https://code.google.com/p/mbb-vb-toolbox/). One 

advantage of the VB approach is that goodness of fit can be measured by the free energy, which 

depends not only on the maximum likelihood of observed choices and number of parameters but also 

on the posterior probability of the estimated parameters. In our model selection analyses, we used both 

the Free Energy and Akaike Information Criterion as metrics for goodness of fit. For all learning rates ( ) 

and the performance-weighting parameters ( ), pseudo-uniform distribution of the priors over the [0,1] 

interval were used. For the priors of inverse temperature, we used Gaussian distributions centered on 0 

and 1.4 for spontaneous and control choices, respectively; a value of 1.4 corresponds to the a priori 

expectation that the selection of the weakest opponents would reach 80% (for a RL problem where 

values range from 0 to 1; note however that given the extremely high variance used to generate prior 

distributions, this positively centering could only have very negligible effect on parameter estimation). 

Conversely, a value of 0 means that inverse temperature ( ) are a priori equally likely to be positive or 

negative, which is justified by the absence of objective utility maximizing norm ruling spontaneous 

choices (subjects could perfectly prefer to defy systematically the strongest opponents). Because we had 

no specific hypothesis regarding the exact distribution of inverse temperature parameters in the 

population, we used a very large prior variance (σ² = 10000), which approximated a flat non-informative 

https://code.google.com/p/mbb-vb-toolbox/


 

distribution over the interval of interest. Note that using shrinkage non-informing priors (i.e. distributed 

around 0 with variance 1) instead of flat priors for the estimation of learning rate did not change 

conclusions based statistical inference. 
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