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Taking other people’s interests into account is a fundamental ability allowing humans
to maintain relationships. Yet, the mechanisms by which monetary incentives for
close others influence perceptual decision-making processes remain elusive. Here, we
compared perceptual decisions motivated by payoffs for oneself or a close relative.
According to drift diffusion models (DDMs), perceptual decisions are made when
sensory evidence accumulated over time – with a given drift rate – reaches one of
the decision boundaries. We used these computational models to identify whether the
drift rate of evidence accumulation or the decision boundary is affected by these two
sources of motivation. Reaction times and sensitivity were modulated by three factors:
the Difficulty (motion coherence of the moving dots), the Payoff associated with, and
the Beneficiary of the decision. Reaction times (RTs) were faster for easy compared to
difficult trials and faster for high payoffs as compared to low payoffs. More interestingly,
RTs were also faster for self than for other-affecting decisions. Finally, using DDM, we
found that these faster RTs were linked to a higher drift rate of the decision variable.
This study offers a mechanistic understanding of how incentives for others and motion
coherence influence decision-making processes.

Keywords: social cognition, motivation, decision making, drift diffusion models, drift rate, vicarious reward

INTRODUCTION

When playing at a shooting range in a fairground, we accumulate sensory evidence (about target
movement) until we can shoot accurately, and win the prize. Now, if such decisions are made so that
the prize goes to a close friend, will we process and use information in the exact same way? More
precisely, how does motivational incentives for someone else influence the mechanisms engaged
in making simple perceptual choices as compared to the same decisions associated with the same
incentives, but for you?

In the last decades, the framework of sequential-sampling models, such as drift diffusion models
(DDMs), has proven to be a powerful approach to explain the process of making a decision
(Vandekerckhove and Tuerlinckx, 2007; Ratcliff and McKoon, 2008; Leite and Ratcliff, 2010;
Summerfield and Tsetsos, 2012; Forstmann et al., 2016; Ratcliff et al., 2016). DDMs successfully
capture the complex relationship between choice and reaction times (RTs) by decomposing these
behavioral data into internal cognitive components of decision processing. In this framework, a
decision reflects a decision variable drifting with a given rate (v), from an intermediate starting
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point (z) toward one of the decision boundaries at hands. Each
boundary is separated from the starting point (z) of a given
distance (a) and acts as a decision threshold for an option, so that
the response of a decision is initiated when the decision variable
reaches one of the boundaries. In the example of the shooting
range, the decision variable would accumulate information about
the position of the moving ducks over time, and when (relative)
certainty about their position is reached, the decision of pulling
the target is made.

Sensory encoding of information basically relies on the quality
of the available evidence (Ratcliff and McKoon, 2008). A foggy
weather would slow the rate at which the decision variable
rises, as compared to clear climate conditions. Reliability of the
decision depends on the distance between the starting point of the
decision variable and the decision boundary; the decision rules
are set by the read-out mechanisms (Brainard, 1997; Summerfield
and Tsetsos, 2012; Oppenheimer and Kelso, 2015; Forstmann
et al., 2016). Reaching higher decision boundaries requires more
evidence to be accumulated, thus leading to a better accuracy,
but takes a longer time. Which of the evidence accumulation
stage (drift of the decision variable) or the read-out mechanisms
(distance between the starting point and the decision boundaries)
would be adjusted differently based on vicarious information
(the beneficiary of the decision)? How is the perceptual decision
process modulated when the source of motivation concerns a
close relative rather than oneself?

Here, we designed a new paradigm, enabling the use of DDMs
to investigate the influence of the payoff associated with and
the person affected by a perceptual decision (Figure 1). The
participants performed a random dots task (left/right direction
categorization) to win low or high payoffs, for themselves or
for a close relative. We tested which of the DDM parameters
are modified between other-affecting and self-affecting decisions:
the drift rate of the decision variable (encoding) or the decision
boundary (read-out; Figure 2)? Changes in the distance between
the starting point and the decision boundary (a) would mean
that people integrate beneficiary-related motivation through the
read-out mechanisms, setting the decision rules prior to starting
the evidence integration itself. Alternatively, a direct influence
of self/other motivation on the decisional process could affect
the drift rate of the decision variable, which is an index of the
quality of evidence used for the decision. This would suggest
that sources of motivation (payoff for self/payoff for other) are
integrated together with the evidence for the choice alternatives
into a single source of evidence during the accumulation process.
Finally, a variation in the non-decision time would indicate that
the beneficiary-related motivation acts on cognitive mechanisms
outside of the decision process itself, such as primary encoding of
the stimuli and motor execution.

MATERIALS AND METHODS

Participants
Forty healthy subjects were recruited by advertisements in the
Lyon 1 Claude Bernard University students’ mailing list. Subjects
were screened using self-reports to exclude any psychiatric

or neurological history, and current or previous substance
abuse (except nicotine and festive alcohol consumptions). All
participants gave written informed consent and received 20€
for their participation. This study was approved by the local
research ethics committee (Comité de Protection des Personnes
Sud-Est III); all methods were performed in accordance with the
relevant guidelines and regulations. Two subjects were excluded,
one for chance level performances and the other for technical
problems, leaving 38 subjects for further analyses (15 females;
mean age = 21.84, range = 18–34).

Stimuli
Random dots kinematograms (RDKs) were programmed using
the MATLAB R© Psychtoolbox (Brainard, 1997; Pelli, 1997). The
mask stimulus was a drifting random dots display of 2000 ms
duration. Dots were white on a black background, with each
frame composed of 50 white Gaussian blobs with a diameter of
2.85 mm. The stationary dots began to move with a speed of 2.7◦/s
from their original locations, and each dot had a life duration
of 500 ms. The motion of the dots was made by replotting dots
corresponding to the previous ones at a determined spatial offset
in the same direction so that all the dots moved in their directions
at the same speed. During the experiment, RDKs appeared in a
square centered on the screen (Dell, 19′′, screen resolution set to
1,280 × 1,050, vertical refresh rate of 60 Hz), taking 30.8% of the
screen, with participants at a distance of 60 cm.

Procedure
Before going to the laboratory, the volunteers were asked to
choose a close relative for who they would be willing to play
for, on half of the experiment. At their arrival, the participants
sat in the experimental room, were informed, and gave their
written consent. Their relationship with the chosen person was
asked [seven participants chose one of their parents (mother or
father), seven chose a sibling, eight chose their lover, three chose
a friend, and two chose their roommate]. A few demonstration
trials were shown, for them to see how the condition cue (Payoff
and Beneficiary) was displayed. Subjects were trained and then
finally completed the task. It lasted approximately 64 min, in four
blocks of 16 min each. All were debriefed when the task was over.

Training
Before the task, subjects were trained to be familiarized with the
design and timing. The training was composed of 10 trials of 15%
coherently moving dots, which is the easy level of the task. To
ensure that participants did not respond randomly, a sensitivity
(d’) criterion was set at d = 0.6 (i.e., 60% correct, which is
higher than chance level). If subjects were below this criterion in
the training session, they performed a second identical training.
All of the included subjects eventually reached the criteria and
subsequently performed the task.

Instructions
Participants were explained that they would perform a game
in order to win money, either for themselves of for the close
relative they chose. They were told that they would earn 10€
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FIGURE 1 | Trials design. Each trial began with a cue, showing “me” or “him” (for self- and other-affecting decisions, respectively) and a full filled rectangle (high
payoff) or a one-fifth filled rectangle (low payoff) on top of a square. The cue and the square were depicted in yellow or in blue, according to the beneficiary. Then, the
first frame of the random dots kinematogram (RDK; stationary dots) appeared in the square for 1,000 ms. Following this, the moving dots were presented for
2,000 ms and the subject had to respond while the dots were moving. At the end of the 2,000 ms of dots motion, the payoff was presented. If the response was
correct, a pile of coins proportional to the payoff was shown together with the value of payoff itself (“+2,” “+10”) above it. For incorrect responses and misses, a
red-colored cross was displayed together with “+0” on top of it. Then, a new trial began and the cue of the upcoming trial was shown.

for doing the experiment and could win 2€ or 10€ more for
themselves and also 2€ or 10€ for their relatives. The participants
were asked to discriminate the left/right direction of coherently
moving dots. They were instructed that they had to give one, and
only one, response during the dots motion: if they gave more
than one response or did not respond (miss), the program would
consider it as incorrect. Money was not accumulated over trials,
nor was such accumulation shown to the participants. They were
told that one trial of each of the beneficiary condition (self and
other) would be randomly selected (by a computer program)
to determine their final payoffs. The payoff associated with the
trial would be won by the beneficiary, if it was a correct trial.
Participants were told (and believed) that the payoff for the other
(as well as for themselves) would be sent after completing the
experiment. In reality, the close relative received nothing and
all participants received 20€ (as if the selected trial was won for
himself and associated with a high payoff). This procedure (i)
ensured that participants treated all decisions as equally relevant,
both for themselves and their close relative; (ii) avoided any
competition effects to arise between self and other interests. Also,
accuracy was implicitly emphasized by telling the participants
that, although they would have to adapt to the given 2 s to answer,
time should not be a problem since the duration of the stimuli was
chosen based on previous experimental results (pilot study).

Task Design
A square was always present in the middle of the screen. On top
of this square appeared the cue, which indicated the beneficiary
and payoff conditions of the forthcoming trial. The dots were
displayed inside the area defined by the square. The square and

the cue were colored yellow or blue, according to the beneficiary
of the payoff associated with the trial. The color was used to
emphasize the beneficiary of the trial and was counterbalanced
between subjects.

Each trial began with the cue, which had a jittered duration
from 800 to 1,200 ms and was used as inter-trial interval (ITI).
The cue consisted in a word announcing the beneficiary of the
decision (“him” for others-affecting decisions, “me” for self-
affecting decisions) to the left of a rectangle filled proportionally
to the payoff associated with the decision (full filled rectangle
for 10€, one-fifth filled rectangle for 2€). This cue remained
on the screen during the entire subsequent trial. After the cue,
the first frame of the RDK to come (a picture of stationary
dots) was shown for 1,000 ms. Then, dots motion began and
lasted for 2,000 ms, during which the subject had to respond.
Motion coherence was either 13% (difficult) of 15% (easy), for
all participants. At the end of the 2,000 ms of dots motion, the
feedback illustrated the payoff for 500 ms. If the response was
correct, a pile of coins proportional to the payoff (2 or 10€), was
shown together with the value of payoff itself (“+2,” “+10”). For
incorrect responses and misses, a red-colored cross was displayed
together with “+0” above it. At the end of the trial, a new ITI was
displayed, showing the cue for the trial to come.

A total of 104 trials per Beneficiary∗Payoff∗Difficulty
condition were performed, leading to 832 trials per subject.
The task was composed of 4 blocks, of 208 trials each.
Each block included 26 trials of each of the 8 conditions.
Difficulty levels, Payoffs, Beneficiaries, and dots direction were
pseudo-randomized within each block and across participants.
Randomization of dots direction was designed to avoid a bias
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FIGURE 2 | Drift diffusion models (DDMs) and hypotheses. (A) DDM main
parameters. DDM assumes that two-choice decisions are made by a noisy
process that accumulates information, with a given drift rate (v), over time.
This process goes from the starting point (z) toward the decision boundary.
When the boundary is reached, a response is initiated (with a button press, in
usual experimental setups). The starting point and the boundary are separated
by the distance (A). (B–D) Effects of boundary modulation, drift-rate changes,
and non-decision time variation on response initiation. (B) Boundary
modulation. A boundary increase (A+) leads decisions that require more
sensory evidence, and thus a longer time, than when a lower boundary is set
up (A–). (C) Drift-rate change. A drift rate increase (V+) produces faster
sensory evidence accumulation than a lower one (V–), producing faster
reaction times. (D) Non-decision time variation. A longer non-decision time
(TER+) leads to slower decisions than a shorter one (TER–).

toward one of the two (left or right) alternatives, constraining it to
no more than three consecutive trials of the same dots direction.

It is to be noted that we actually ran a first experiment
using another anonymous, randomly selected, participant as “the
other.” However, there was no main effect of the beneficiary on
RT or on d’ (Supplementary Table 1). Since we were aiming
to characterize how others are taken into account into the
perceptual decision-making process, and based on the literature
showing that familiarity increase vicarious effects (Mobbs et al.,
2009; Kawamichi et al., 2013), we adapted our task with
a close relative.

Statistical Analysis
Reaction times for corrects and RTs for errors were analyzed
separately, and RTs were logarithmically transformed. logRT and
sensitivity (d’) normality distribution was ensured using Lilliefors
tests. logRT and d’ were then analyzed using three-way repeated-
measures analyses of variances (rmANOVAs). The factors were
as follows: “Beneficiary” (two levels: other vs. self), “Payoff”
[two levels: high (10€) vs. low (2€)], and “Difficulty” [two levels:
13% motion coherence (difficult) vs. 15% coherence (easy)].
Beneficiary and Payoffs were overt factors, indicated by cues on
each trial, but difficulty was not explicitly given to participants.
During debriefing, we asked participants during debriefing how
many difficulty levels they perceived. Most of them perceived
two levels; only two of them thought there were more and one
did not conscientiously perceived any. All post hoc analyses were
performed using LSD Fisher tests. There was no effect of gender
on behavior (Supplementary Table 2). Although there could be
effects of sex hormone variations on decision making in young
women, we did not record the phase of the menstrual cycle in our
sample. All statistical analyses were performed using Statistica
(STATISTICA R©, Dell Inc., 2015), except for normality tests and
DDM fitting, performed on MATLAB R©.

Fitting the DDM to the Data
The DDM assumes that two-choice decisions are made by a noisy
process that accumulates information over time from a starting
point (z) toward one of two choice criteria or boundaries (here,
corresponding to left and right response decision, respectively;
Figure 2A). When one of the boundaries is reached, a response
is initiated. The starting point and the decision boundaries
are separated by distance (a). The evidence that drives the
accumulation process, the drift rate (v), is derived from the
representation of the stimulus. The better the quality of the
evidence, the larger the drift rate toward the appropriate decision
boundary, and the faster and more accurate the response
(Figure 2C). The components of processing acting outside the
decision process itself, such as encoding and response output, are
combined in a single parameter: the non-decision time parameter
(Ter). RT being the result of non-decision time added to the
time it takes for accumulated evidence to reach one of the
boundaries, and sensitivity coming from the reached boundary
that determines which response is given, the model extracts the
components of the decision process (values of drift rate, non-
decision processes, and boundaries) from RT distribution and
sensitivity data simultaneously.
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For fitting the diffusion model to the data (Ratcliff and
Tuerlinckx, 2002; Vandekerckhove and Tuerlinckx, 2007), we
used the MATLAB Diffusion Model Analysis Toolbox [DMAT
(Vandekerckhove and Tuerlinckx, 2008)]. The DMAT extracts
the components of the decision process and their variability
from RT distribution and sensitivity data from all trials for each
condition. All trials, correct and error, are thus included in
the DMAT parameter estimation. Parameters are estimated by
maximizing a multinomial likelihood function. Left and right
trials being equally distributed across the experiment (50% of
trials for each direction, within each block), the underlying
diffusion processes are supposed to be symmetric and no bias
toward the left or right answer should arise. We ran a model
where the starting point (z) was estimated independently from
the decision boundary for the left and the right button presses
separately. We then checked that z was not different between
left and right responses using a one-way rmANOVA with
response direction as factor. The analyses showed no effect of
response direction (F1,37 = 0.001; p = 0.971), ensuring that
no bias emerged toward either the left or the right response.
Consequently, we applied in all our models a starting point equal
to half the distance between the left and right decision criteria
(z = 1/2 a). Each model was fitted to the data separately for
each participant.

The first model we ran allowed all three parameters to vary
[the boundary (a), the drift (v), and the non-decision time
(Ter)]. The estimated parameter values did not follow a normal
distribution; we thus used a decimal logarithmic transformation
and ensured it normalized their distribution using Lilliefors
tests (Supplementary Table 3) before we applied the three-
way rmANOVA. The three factors were the Beneficiary of the
decision, the Payoff associated with the decision and the Difficulty
(dots coherence). The boundary (a) and the non-decision time
(Ter) showed no effect of any factor. We thus ran a model where
only the drift (v) was free to vary across conditions. Once again,
we analyzed log(v) using the same three-way rmANOVA. In
order to compare the goodness of fit of our models, we also
ran the intermediate models (either the drift and the boundary
or the drift and the non-decision time were allowed to vary)
and compared the sum of the individual Bayesian Information
Criterion (BIC) of the models.

Data Availability
The data used in the present paper will be available to any
reader after publication. The datasets generated and/or analyzed
during the current study will be available in the repository, on a
permanent free-access web link.

RESULTS

Participants performed a random dots (left/right direction
categorization) task to win low or high payoffs, for themselves
or for a close relative. RTs and sensitivity (d’) were collected and
analyzed using three-way rmANOVAs, with “Beneficiary” (two
levels: Other vs. Self), “Payoff” (two levels: High vs. Low), and
“Difficulty” (two levels: Difficult vs. Easy) as factors.

FIGURE 3 | (A–C) Main effect of difficulty. Easy trials are green and on the left,
Difficult trials are red and on the right. (A) Sensitivity (d’) is worse, (B) reaction
times (RTs) are longer, and (C) drift rate (v) is lower during Difficult trials than
during Easy trials. (D–F) Main effects of beneficiary. Self-affecting trials are
cyan and on the left; other-affecting trials are orange and on the right.
(D) Sensitivity did not differ but there was (E) a faster RT and (F) a higher drift
rate (v) for Self than for Others. Log RT, d’, and log v are expressed in arbitrary
units (a.u.). Bars represent the standard errors of the mean (SEM).

Sensitivity (d’)
Participants missed only one trial in the experiment. A main
effect of task Difficulty was found; d’ was better during Easy
trials than during Difficult trials (d’Easy = 0.82; d’Difficult = 0.79;
F1,37 = 57.4; p = 0.0000001; Cohen’s d = 0.362; Figure 3A). All
interaction effects also reached significance, including the triple
interaction effect (F1,37 = 16.8; p = 0.000220). We consequently
ran two-ways rmANOVAs for each difficulty level, keeping
Beneficiary and Payoff as factors.

During Easy trials, d’ was better for Self than for Other
(d’Self = 0.83; d’Other = 0.80; F1,37 = 16.2; p = 0.000276; Cohen’s
d = 0.305; Figure 4A) and better for Low than for High
Payoffs (d’Low = 0.83; d’High = 0.81; F1,37 = 11.5; p = 0.001683;
Cohen’s d = 0.266; Figure 4D). During Difficult trials, both
Beneficiary (d’Self = 0.77; d’Other = 0.80; F1,37 = 24.7; p = 0.000015;
Cohen’s d = 0.375) and Payoff (d’Low = 0.77; d’High = 0.81;
F1,37 = 30.0; p = 0.000003; Cohen’s d = 0.465) were significant.
The Beneficiary∗Payoff interaction also reached significance
(F1,37 = 19.9; p = 0.000072). Sensitivity for Self-affecting decisions
associated with a Low Payoff was lower than for Other-affecting
ones (d’Self = 0.74; d’Other = 0.80; p < 0.000001; Cohen’s
d = 0.780) and lower than when associated with a High Payoff
(Self: d’High = 0.80; Other: d’High = 0.81; p < 0.000001; Cohen’s
d = 0.816; Figure 5A).

Reaction Times
The results presented here come from analyses performed on
logarithmically transformed RTs (decimal logarithm), for correct
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FIGURE 4 | Effect of beneficiary and payoff for easy trials only. (A–C)
Beneficiary. Self-affecting trials are cyan and on the left; Other-affecting trials
are orange and on the right. During Easy trials, (A) sensitivity (d’) is better,
(B) RTs are faster, and (C) drift rate (v) is higher for Self than for Other. (D–F)
Effect of payoff. Low Payoffs are in deep purple and on the left; High Payoffs
are in light purple and on the right. (D) Sensitivity (d’) is better, (E) RT is faster,
and (F) v is higher for Low than for High Payoffs. Log RT, d’, and log v are
expressed in arbitrary units (a.u.). Bars represent the standard errors of the
mean (SEM).

and error trials separately. For intelligibility, the mean values
in the following paragraph are given as non-transformed RT, in
milliseconds (ms). Difficulty had an effect on log RT from errors,
with subjects being slower during Difficult than during Easy trials
(RTDifficult = 1146 ms; RTEasy = 1110 ms; F1,37 = 6.6; p = 0.0146;
Cohen’s d = 0.209). This was the only effect on RT from errors.

All the following results concern correct responses. We found
a main effect of task Difficulty (Figure 3B) and a main effect
of Beneficiary (Figure 3E) on log RT (for correct responses).
That is, RTs were slower during Difficult than during Easy
trials (RTDifficult = 1055 ms; RTEasy = 1033 ms; F1,37 = 36.56;
p < 0.001; Cohen’s d = 0.144) and slower for Other than for
Self (RTOther = 1054 ms; RTSelf = 1035 ms; F1,37 = 18.86;
p < 0.001; Cohen’s d = 0.125). The triple interaction effect
was not significant (F1,37 = 0.22; p = 0.645). However, both
the Beneficiary∗Difficulty and the Payoff∗Difficulty interaction
effects reached significance (F1,37 = 37.10; p < 0.000001 and
F1,37 = 4.26; p = 0.0461, respectively). Given the main effect
of Difficulty, we then ran separate two-way rmANOVA at each
Difficulty levels, keeping Beneficiary and Payoff as factors.

RTs were slower for Other than for Self, during Easy trials only
(RTOther = 1047 ms, RTSelf = 1020 ms, F1,37 = 32.6; p = 0.000002;
Cohen’s d = 0.180; Figure 4B). Payoff had an effect at both
Difficulty level, but with opposite direction. During Easy trials,
RTs were slower for High than for Low Payoffs (RTHigh = 1049 ms,
RTLow = 1017 ms, F1,37 = 23.5; p = 0.000022; Cohen’s d = 0.203;
Figure 4E), while during Difficult trials, they were faster for High

than for Low Payoffs (RTHigh = 1045 ms, RTLow = 1065 ms,
F1,37 = 21.53; p = 0.000043; Cohen’s d = 0.142).

DDM Parameters
We started with the selection of the best-fitting model. The first
model we ran allowed all three parameters [the boundary (a), the
drift (v), and the non-decision time (Ter)] to vary. In this model
(“full model”), the boundary (a) and the non-decision time (Ter)
showed no effect of any of the three factors (Beneficiary, Payoff,
and Difficulty). We thus applied a model where only the drift (v)
was free to vary across conditions (“v free”). In order to compare
the goodness of fit of our models, we also ran the intermediate
models (either the drift and the boundary, “v free–a free,” or the
drift and the non-decision time, “v free–Ter free,” were allowed
to vary) and compared the sums of the individual BIC of the
models. The model where only the drift (v) was allowed to vary
showed a lower BIC than all other models (BIC sums: full model:
7.62 × 104, v free: 7.30 × 104; v free–a free: 7.46 × 104; v free–
Ter free: 7.45× 104). To ensure that this reflected individual fits,
we also compared the BICs of the models within each individual.
Thirty-six of 38 subjects were best fitted with the model where
only the drift is allowed to vary (“v free”); the two other subjects
were best fitted with the addition of modulations of the boundary
a (“v free–a free”). Furthermore, we ran the simulations of the
data predicted by the model using the estimated parameter, for
each subject (Supplementary Figure 1).

We subsequently applied a three-way (Beneficiary, Payoff,
and Difficulty) rmANOVAs on the drift parameter (v) from
the “v free” model. Note that log(v) values are negative, so
that higher absolute values of log(v) actually mean lower drift
rates (v) of the decision variables. Difficulty had a main effect
on the drift rate (v), which was higher during Easy than
during Difficult trials [log(v)Easy = −0.76; log(v)Difficult = −0.84;
F1,37 = 35.9; p = 0.000001; Cohen’s d = 0.503; Figure 3D].
Beneficiary also had a main effect, v being higher during
Self- than during Other-affecting decisions [log(v)Self = −0.78;
log(v)Other = −0.82; F = 4.42; p = 0.0423; Cohen’s d = 0.273;
Figure 3F]. The Beneficiary∗Payoff interaction also reached
significance (F1,37 = 6.28; p = 0.01673). For decision associated
with a High Payoff, v was higher for Self than for Other
[log(v)Self = −0.76; log(v)Other = −0.83; p = 0.000078; Cohen’s
d = 0.385]. The Beneficiary∗Difficulty and the Payoff∗Difficulty
interactions were significant (F1,37 = 29.5; p = 0.0000004 and
F1,37 = 13.3; p = 0.000801, respectively). We consequently ran
two-way rmANOVAs at each Difficulty level, keeping Beneficiary
and Payoff as factors.

During Difficult trials, Payoff had a main effect
[log(v)High =−0.81, log(v)Low =−0.87, F1,37 = 9.28; p = 0.004265;
Cohen’s d = 0.409; Figure 5C], but the Beneficiary∗Payoff
interaction was also significant (F1,37 = 8.80; p = 0.005251). Payoff
actually had an effect only for Self-affecting decisions, with a
higher drift (v) for High than for Low Payoffs [log(v)High =−0.80,
log(v)Low =−0.91; p = 0.000045; Cohen’s d = 0.592].

During Easy trials, both Beneficiary and Payoff had a
main effect: the drift (v) was higher for Self than for Other
[log(v)Self =−0.70; log(v)Other =−0.81; F1,37 = 19.8; p = 0.000076;
Cohen’s d = 0.587] and higher for Low than for High Payoffs
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FIGURE 5 | Effect of payoff for difficult trials for self and close relative (other).
(A–C) Effect of payoff for Self. (A) Sensitivity (d’) is lower, (B) reaction times
(RTs) are slower, and (C) drift rate (v) is lower for Low Payoffs than for High
Payoffs. (D–F) Effect of payoff for Other. There is no difference in (D) sensitivity
(d’), (E) RT, or (F) v between Low and High Payoffs. Log RT, d’, and log v are
expressed in arbitrary units (a.u.). Bars represent the standard errors of the
mean (SEM).

[log(v)High = −0.79, log(v)Low = −0.73, F = 6.18; p = 0.017588;
Cohen’s d = 0.179].

DISCUSSION

Taking advantage of the DDM and the perceptual decision-
making framework, we provided a mechanistic explanation of
how others are integrated into the decisional process. Our results
indicate that the beneficiary of the incentive associated with a
decision modifies how decisions are performed. Decisions were
faster for self than for others. As explained by the DDM, this
was related to a higher drift rate (v) of the decision variable.
In the present experiment, better sensitivity and faster RT were
mirrored by higher drift rates. Higher drift rates have been found
to explain shorter RT in tactile discrimination as well (Mulder
and van Maanen, 2013). A change in the drift rate of the decision
variable indicates a modification of the integration process itself,
as branding does for economic value-based choices (Philiastides
and Ratcliff, 2013). Our result indicates that sensory evidence
is integrated faster for self than for others. In the example of
the shooting range, if we aim to reach a target to win a price
for a close relative, the decision process would not differ in the
amount of evidence we would accumulate before making the
decision to shoot, but rather in the efficiency of accumulation of
the sensory evidence.

It may be that participants tried to imagine their relative
receiving the payoff, although not instructed to do so. This
would have required higher cognitive demands and redirect part
of the attentional load and neuronal energy from the evidence
accumulation process. Using the Game Theory and Public Good

Games, studies show that taking into account another person
into a decision engages the processes of mentalizing (or the
Theory of Minds) (Frith and Singer, 2008; Stallen and Sanfey,
2013). It could also be that, when performing a self-affecting
decision, more attentional resources are spent on the task
(because of a higher motivation, due to direct self-benefit),
thereby increasing the efficiency of evidence accumulation. In a
study on value-based decision making combined with DDM, it
has been suggested that, when choosing on behalf of another,
a dual process takes place. Stimulus value integration, reflected
in the drift rate (v), would be firstly computed based on self-
preferences and then adjusted to the other’s inferred preferences
(Harris et al., 2018). For others with similar preferences, RTs
were longer and linked to a change in drift rate. Analogous
mechanisms could have occurred during our experiment as
well. The importance accorded to the evidence, reflected in the
drift rate (v) of the decision variable, could have been initially
lower during other-affecting decisions, or it could have been re-
adjusted during the time of the decision. Alternatively, RTs for
dissimilar others were also longer but associated with a higher
decision boundary (a), which could have been implemented
to overcompensate for an increased uncertainty about their
preferences (Harris et al., 2018).

Payoffs for others could have been integrated into
the perceptual decision process through a change in the
decision rules, outside of the mechanism of sensory evidence
accumulation and change the distance between the starting
point of the decision variable and the decision boundary. Other
researchers also suggested that payoff can modify both stages,
evidence accumulation and decision boundary. It postulates two
processes, one for payoffs and another for stimulus information,
and that on a given trial, attention is directed toward one of
these information, never both (Diederich and Busemeyer, 2006;
Diederich, 2008). Sequential-sampling models have previously
been used to account for the effects of payoffs in a perceptual
decision task with time constraints. These studies have reported
changes in the distance from the starting point to the decision
boundaries, a bias in the starting point of the decision variable,
induced either by prior probabilities of being correct (Leite and
Ratcliff, 2010; Mulder et al., 2012) or by asymmetrical payoffs
associated with the possible response alternatives (Simen et al.,
2009; Mulder et al., 2012). These changes were characterized
by a shift of the starting point of the decision variable closer
to the decision boundary associated with the alternative having
the higher probability or associated with the higher payoff.
The starting point is then further from the other boundary
(for the other alternative at hand) and the decision variable
is less likely to reach it, establishing a bias and a change in
response proportion.

In contrast, our experimental setup was designed to avoid
response probability manipulations toward one of the (left
or right) alternatives, in terms of probability (through trials
randomization) and in terms of payoff (by assigning the
same payoff to both response alternatives). We aimed to
compare identical decisions made by the participants, either
for themselves or for another person. It would be interesting
to adapt our paradigm to asymmetrical alternatives, with the
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payoff going to one of the beneficiaries depending on the
correct answer. Following our results, it could be expected that
a bias toward the response associated with self-payoff would
emerge. Finally, a variation in the non-decision time (Ter)
would have indicated that the beneficiary-related motivation
acts on cognitive mechanisms that are outside of the decision
process itself, such as primary encoding of the stimuli and
motor execution. Non-decision time is usually referred to as
reflecting the early encoding of the stimulus of interest and
the execution of the motor response, once the decision process
is completed (Brainard, 1997; Frith and Singer, 2008; Ratcliff
and McKoon, 2008; Philiastides and Ratcliff, 2013; Stallen and
Sanfey, 2013), both external to the visuo-motor decision process
in itself. Moreover, the non-decision time is thought to be
necessary to account for speed–accuracy trade-offs (Mulder and
van Maanen, 2013), and it has been shown that speed–accuracy
instructions also modulate the non-decision time (Zhang and
Rowe, 2014). Variation in the non-decision time can mean
that different strategies are applied (Schuch, 2016) and could
include other components that influence the decision-making
processes. However, the DDM cannot distinguish between
different mechanisms within the non-decision time.

This study is a first step toward a better comprehension of
how others influence decision-making processes. Altogether, our
results suggest that the beneficiary affected by the decision is
integrated together with the sensory evidence into the decision
variable and affect the efficiency of the accumulation process
during perceptual decision making. The present work provides
further evidence of the strength of sequential-sampling models
in a unified theory of choices (Summerfield and Tsetsos, 2012;
Polanía et al., 2014, 2015), with outcomes that are self-interested
or vicarious. However, while the main effect of beneficiary was
significant on RT and drift rate (v), when analyzing difficulty
levels separately, the effect was not present during difficult trials.
This may be attributed to the fact that sensory evidence was too
low for the drift to be modulated. Although the study of payoff
per se was not our main goal, it is puzzling to observe that its
effect was reversed between the easy and difficult level. Further
studies are needed to confirm both results. A future direction
would also be to specify how social distance to others changes
perceptual decisions, as previously investigated using economic
games where participants chose between selfish and generous
alternatives (Strombach et al., 2015).
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